精英家教网 > 高中数学 > 题目详情

【题目】设函数

1)若函数上递增,在上递减,求实数的值.

2))讨论上的单调性;

3)若方程有两个不等实数根,求实数的取值范围,并证明.

【答案】12)见解析(3,见解析

【解析】

1)根据单调区间判断出是极值点,由此根据极值点对应的导数值为求解出的值,并注意验证是否满足;

2)先求解出,然后结合所给区间对进行分类讨论,分别求解出的单调性;

3)构造函数,分析的取值情况,由此求解出的取值范围;将证明通过条件转化为证明,由此构造新函数进行分析证明.

1)由于函数函数上递增,在上递减,

由单调性知是函数的极大值点,无极小值点,所以

,此时满足是极大值点,

所以

2)∵

①当时,上单调递增.

②当,即时,

上单调递减.

③当时,

.

;令.

上单调递增,在上单调递减.

综上,当时,上递增;

时,上递减;

时,上递增,在上递减.

3)令

时,单调递减;

时,单调递增;

处取得最小值为

又当,由图象知:

不妨设,则有

上单调递增,故

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知等差数列满足,数列的前项和为满足.

(Ⅰ)求的通项公式;

(Ⅱ)若恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若正整数数列满足:对任意,都有恒成立,则称数列为“友好数列”.

1)已知数列的通项公式分别为,求证:数列为“友好数列”;

2)已知数列为“友好数列”,且,求证:“数列是等差数列” 是“数列是等比数列”的充分不必要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列选项中,说法正确的是(

A.的否定是

B.若向量满足 ,则的夹角为钝角

C.,则

D.的必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂的机器上有一种易损元件A,这种元件在使用过程中发生损坏时,需要送维修处维修.工厂规定当日损坏的元件A在次日早上 830 之前送到维修处,并要求维修人员当日必须完成所有损坏元件A的维修工作.每个工人独立维修A元件需要时间相同.维修处记录了某月从1日到20日每天维修元件A的个数,具体数据如下表:

日期

1

2

3

4

5

6

7

8

9

10

元件A个数

9

15

12

18

12

18

9

9

24

12

日期

11

12

13

14

15

16

17

18

19

20

元件A个数

12

24

15

15

15

12

15

15

15

24

从这20天中随机选取一天,随机变量X表示在维修处该天元件A的维修个数.

(Ⅰ)求X的分布列与数学期望;

(Ⅱ)若ab,且b-a=6,求最大值;

(Ⅲ)目前维修处有两名工人从事维修工作,为使每个维修工人每天维修元件A的个数的数学期望不超过4个,至少需要增加几名维修工人?(只需写出结论)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的几何体中,垂直于梯形所在的平面,的中点,,四边形为矩形,线段于点.

(1)求证:平面

(2)求二面角的正弦值;

(3)在线段上是否存在一点,使得与平面所成角的大小为?若存在,求出的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,设A是由个实数组成的nn列的数表,其中aij (ij=123n)表示位于第i行第j列的实数,且aij{1-1}.S(nn)为所有这样的数表构成的集合.对于,记ri (A)A的第i行各数之积,cj (A)A的第j列各数之积.令

a11

a12

a1n

a21

a22

a2n

an1

an2

ann

(Ⅰ)请写出一个AS(44),使得l(A)=0

)是否存在AS(99),使得l(A)=0?说明理由;

)给定正整数n,对于所有的AS(nn),求l(A)的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆经过点,且圆心在直线.

1)求圆的方程;

2)过点的直线截圆所得弦长为,求直线的方程.

3)若直线与圆相切,且轴的正半轴分别相交于两点,求的面积最小时直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平行六面体中,底面是菱形,四边形是矩形.

(1)求证:

(2)若在棱上,且,求二面角的余弦值.

查看答案和解析>>

同步练习册答案