1£®É躯Êýf£¨n£©=$\left\{\begin{array}{l}{n£¬nΪÆæÊý}\\{f£¨\frac{n}{2}£©£¬nΪżÊý}\end{array}\right.$£¬an=f£¨1£©+f£¨2£©+f£¨3£©+¡­+f£¨2n£©£¬
£¨1£©Çóa1£¬a2£¬a3µÄÖµ
£¨2£©Éèbn=an+1-an£¬Ð´³öbnÓëbn+1µÄµÝÍƹØϵ£¬²¢Çó{bn}µÄͨÏʽ£®
£¨3£©ÉèÊýÁÐ{cn}µÄͨÏʽΪcn=log2£¨3an-2£©-10£¬n¡ÊN*£¬ÊýÁÐ{cn}µÄÇ°nÏîºÍΪSn£¬
ÎÊ1000ÊÇ·ñΪÊýÁÐ{cn•Sn}ÖеÄÏÈôÊÇ£¬Çó³öÏàÓ¦µÄÏîÊý£¬Èô²»ÊÇ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©Óɺ¯Êýf£¨n£©£¬½áºÏan£¬¿ÉµÃa1£¬a2£¬a3£»
£¨2£©ÓÉÌâÒ⣬µÃan+1=f£¨1£©+f£¨2£©+f£¨3£©+¡­+f£¨2n£©+f£¨2n+1£©+¡­+f£¨2n+1£©£¬×÷²î£¬µÃan+1-an£¬Óɺ¯Êý½âÎöʽ½áºÏµÈ²îÊýÁеÄÇóºÍ¹«Ê½¼ÆËã¿ÉÇóµÃ½á¹û£»
£¨3£©ÓÉan=a1+£¨a2-a1£©+£¨a3-a2£©+¡­+£¨an-an-1£©£¬ÔËÓõȱÈÊýÁеÄÇóºÍ¹«Ê½¿ÉµÃan£¬cn£¬ÔÙÓɵȲîÊýÁеÄÇóºÍ¹«Ê½£¬ÔÙÓÉcn•Sn£¬¼´¿ÉÅжÏ1000ÊÇ·ñÔÚÆäÖУ®

½â´ð ½â£º£¨1£©Óɺ¯Êýf£¨n£©=$\left\{\begin{array}{l}{n£¬nΪÆæÊý}\\{f£¨\frac{n}{2}£©£¬nΪżÊý}\end{array}\right.$£¬
an=f£¨1£©+f£¨2£©+f£¨3£©+¡­+f£¨2n£©£¬µÃ
a1=f£¨1£©+f£¨2£©=1+f£¨1£©=2£»
a2=f£¨1£©+f£¨2£©+f£¨3£©+f£¨4£©=1+1+3+f£¨2£©=5+1=6£»
a3=f£¨1£©+f£¨2£©+f£¨3£©+f£¨4£©+f£¨5£©+f£¨6£©+f£¨7£©+f£¨8£©=1+1+3+1+5+3+7+1=22£»
£¨2£©ÓÉan=f£¨1£©+f£¨2£©+f£¨3£©+¡­+f£¨2n£©£¬
¿ÉµÃan+1=f£¨1£©+f£¨2£©+f£¨3£©+¡­+f£¨2n£©+f£¨2n+1£©+¡­+f£¨2n+1£©£¬
ÔòÓÐbn=an+1-an=f£¨2n+1£©+¡­+f£¨2n+1£©
=£¨2n+1£©+£¨2n-1+1£©+£¨2n+3£©+£¨2n-2+1£©+£¨2n+5£©+£¨2n-1+3£©+¡­+1
=1+3+5+¡­+£¨2n+1£©+¡­+£¨2n+1-1£©=$\frac{1}{2}$£¨1+2n+1-1£©•2n
=4n£®
¼´ÓÐbn+1=4bn£¬ÇÒbn=4n£»
£¨3£©ÓÉan=a1+£¨a2-a1£©+£¨a3-a2£©+¡­+£¨an-an-1£©
=2+4+16+..+4n-1=2+$\frac{4£¨1-{4}^{n-1}£©}{1-4}$=$\frac{{4}^{n}+2}{3}$£¬
¼´ÓÐcn=log2£¨3an-2£©-10=2n-10£¬
Sn=$\frac{1}{2}$n£¨c1+cn£©=$\frac{1}{2}$n£¨2n-18£©=n£¨n-9£©£¬
¼´ÓÐcn•Sn=2n£¨n-5£©£¨n-9£©£¬
µ±n¡Ü13ʱ£¬cn•Sn¡Üc13•S13=832£¼1000£¬
µ±n¡Ý13ʱ£¬cn•Sn¡Ýc14•S14=1260£¾1000£¬
¹Ê1000²»ÊÇ{cn•Sn}ÖеÄÏ

µãÆÀ ±¾Ì⿼²éÁ˷ֶκ¯ÊýÓëÊýÁÐͨÏʽµÄ×ÛºÏÓ¦Óã¬Ö÷Òª¿¼²é·Ö¶Îº¯ÊýµÄÒâÒåºÍµÈ²îÊýÁеÄÇóºÍ¹«Ê½£¬ÒÔ¼°ÀÛ¼Ó·¨ÇóÊýÁеÄͨÏ¿¼²éÔËËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®ÒÑÖªÅ×ÎïÏßy2=4px£¨p£¾0£©ÓëË«ÇúÏß$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾0£¬b£¾0£©ÓÐÏàͬµÄ½¹µãF£¬µãAÊÇÁ½ÇúÏߵĽ»µã£¬ÇÒAF¡ÍxÖᣬÔòË«ÇúÏßµÄÀëÐÄÂÊΪ$\sqrt{2}$+1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÒÑÖªº¯Êýf£¨x£©=-$\frac{1}{a}$+$\frac{2}{x}$£®
£¨1£©½â¹ØÓÚxµÄ²»µÈʽf£¨x£©¡Ý0£®
£¨2£©Èôf£¨x£©+2x¡Ý0ÔÚ£¨0£¬+¡Þ£©ÉϺã³ÉÁ¢£¬ÇóaµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®¡°x£¼4¡±ÊÇ¡°$\sqrt{x}$£¼2¡±µÄ£¨¡¡¡¡£©
A£®³ä·Ö·Ç±ØÒªÌõ¼þB£®±ØÒª·Ç³ä·ÖÌõ¼þ
C£®³äÒªÌõ¼þD£®¼È·Ç³ä·ÖÓַDZØÒªÌõ¼þ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÒÑÖª¼¯ºÏA={y|y=x2£¬x¡ÊR}£¬¼¯ºÏB={y|y=-x2+3x-1£¬x¡ÊR}¼¯ºÏCΪº¯Êýf£¨x£©=$\sqrt{-{x}^{2}+4x+m-7}$µÄ¶¨ÒåÓò£®
£¨1£©ÇóA¡ÉB£»
£¨2£©ÈôA¡ÈC⊆A£¬ÇóʵÊýmµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®Éèa¡ÊZ£¬ÇÒ0¡Üa£¼13£¬Èô512015+aÄܱ»13Õû³ý£¬Ôòa=£¨¡¡¡¡£©
A£®0B£®1C£®11D£®12

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÒÑÖªf£¨x£©=${cos^2}x-\frac{{\sqrt{3}}}{2}sin2x-\frac{1}{2}$
£¨¢ñ£©Ð´³öf£¨x£©Í¼ÏóµÄ¶Ô³ÆÖÐÐĵÄ×ø±êºÍµ¥ÔöÇø¼ä£»
£¨¢ò£©¡÷ABCÈý¸öÄÚ½ÇA¡¢B¡¢CËù¶ÔµÄ±ßΪa¡¢b¡¢c£¬Èôf£¨A£©=0£¬b+c=2£®ÇóaµÄ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®ÒÑÖªÍÖÔ²$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©¾­¹ýÖ±Ïßl£ºx-y+1=0ÓëyÖáµÄ½»µãA£®
£¨1£©ÈôÍÖÔ²CµÄÀëÐÄÂÊΪ$\frac{\sqrt{2}}{2}$£¬ÇóÖ±Ïßl±»ÍÖÔ²CËù½ØµÃµÄÏҵij¤¶È£»
£¨2£©ÈôÍÖÔ²ÉÏ×Ü´æÔÚ²»Í¬µÄÁ½µã¹ØÓÚÖ±Ïßl¶Ô³Æ£¬ÇóÆäÀëÐÄÂÊeµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®ÒÑÖª¼¯ºÏA={x|x¡Ý1}£¬B={x|-2¡Üx¡Ü2}£¬ÔòA¡ÉBµÈÓÚ£¨¡¡¡¡£©
A£®{x|1¡Üx¡Ü2}B£®{x|-2¡Üx¡Ü1}C£®{x|x¡Ý-2}D£®{x|x¡Ü2}

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸