精英家教网 > 高中数学 > 题目详情
19.已知条件p:$\frac{4}{x-1}$≤-1,条件q:x2+x<a2-a,且p是q的一个必要不充分条件,求实数a的取值范围.

分析 利用不等式的解法、函数的性质分别化简命题p,q.对a分类讨论,利用简易逻辑的判定方法即可得出.

解答 解:由$\frac{4}{x-1}≤-1$解得p:-3≤x<1,
由x2+x<a2-a得(x+a)[x-(a-1)]<0,
当$a=\frac{1}{2}$时,可得q:∅;
当$a<\frac{1}{2}$时,可得q:(a-1,-a);
当$a>\frac{1}{2}$时,可得q:(-a,a-1).
由题意得,p是q的一个必要不充分条件,
当$a=\frac{1}{2}$时,满足条件;当$a<\frac{1}{2}$时,(a-1,-a)?[-3,1)得$a∈[{-1,\frac{1}{2}})$,
当$a>\frac{1}{2}$时,(-a,a-1)?[-3,1)得$a∈({\frac{1}{2},2}]$.
综上,a∈[-1,2].

点评 本题考查了不等式的解法、函数的性质、简易逻辑的判定方法,考查了分类讨论方法、推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.如图是根据某校10位高一同学的身高(单位:cm)画出的茎叶图,其中左边的数字从左到右分别表示学生身高的百位数字和十位数字,右边的数字表示学生身高的个位数字,从图中可以得到这10位同学身高的中位数是(  )
A.161 cmB.162 cmC.163 cmD.164 cm

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,四棱锥F-ABCD的底面ABCD是菱形,其对角线AC=2,BD=$\sqrt{2}$,AE、CF都与平面ABCD垂直,AE=1,CF=2.
(1)求二面角B-AF-D的大小;
(2)在答题卡的图中画出四棱锥F-ABCD与四棱锥E-ABCD的公共部分,并计算此公共部分的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知不等式$\frac{{k{x^2}+kx+4}}{{{x^2}+x+1}}$>1.
(1)若不等式对于任意x∈R恒成立,求实数k的取值范围;
(2)若不等式对于任意x∈(0,1]恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.心理学家分析发现视觉和空间能力与性别有关,某数学兴趣小组为了验证这个结论,从兴趣小组中按分层抽样的方法取50名同学(男30女20),给所有同学几何题和代数题各一题,让各位同学自由选择一道题进行解答.选题情况如表:(单位/人)
几何题代数题总计
男同学22830
女同学81220
总计302050
(1)能事据此判断有97.5%的把握认为视觉和空间能力与性别有关?
(2)现从选择做几何题的8名女生(其中包括甲、乙两人)中任意抽取两人对她们的答题情况进行全程研究,记甲、乙两人被抽到的人数为X,求X的分布列及期望E(X).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知$\overrightarrow a,\overrightarrow b,\overrightarrow c$是同一个平面内的三个单位向量,且$\overrightarrow a⊥\overrightarrow b$,则$(\overrightarrow a-\overrightarrow c)•(\overrightarrow b-\overrightarrow c)$的取值范围是(  )
A.$[-1,\sqrt{2}]$B.$[-\sqrt{2},\sqrt{2}]$C.$[\sqrt{2}-2,2]$D.$[1-\sqrt{2},1+\sqrt{2}]$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设数列{an}的前n项和为Sn,已知an=$\frac{{2{S_n}+1}}{3}$,n∈N*
(1)求通项公式an及Sn
(2)设bn=|an-10|,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.某同学有7本工具书,其中语文2本、英语2本、数学3本,现在他把这7本书放到书架上排成一排,要求2本语文书相邻、2本英语书相邻、3本数学书任意两本不相邻,则不同的排法种数为(  )
A.12B.24C.48D.720

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在△ABC中,a,b,c分别为内角A,B,C所对的边,且满足2acosC=2b-$\sqrt{3}$c.
(1)求A的大小;
(2)现给出三个条件:①a=2; ②B=45°;③c=$\sqrt{3}$b.试从中选出两个可以确定△ABC的条件,写出你的选择并以此为依据求△ABC的面积 (只需写出一个选定方案即可,选多种方案以第一种方案记分).

查看答案和解析>>

同步练习册答案