精英家教网 > 高中数学 > 题目详情
14.用分析法、综合法证明:若a>0,b>0,a≠b,则$\frac{a+b}{2}$>$\sqrt{ab}$.

分析 利用分析法的证明方法,逐步找出是不等式成立的充分条件即可.利用综合法通过配方法直接推出结果即可.

解答 解:(1)分析法
为了证明$\frac{a+b}{2}$>$\sqrt{ab}$成立,需证明a+b>2$\sqrt{ab}$ 成立:由于a>0,b>0,即要证(a+b)2>4ab成立.展开这个不等式左边,即得a2+2ab+b2>4ab
即证a2-2ab+b2>0成立.即证(a-b)2>0成立,以上证明过程步步可逆,
∵a≠b,∴(a-b)2>0成立.故$\frac{a+b}{2}$>$\sqrt{ab}$成立.                (5分)
(2)综合法
$\frac{a+b}{2}$-$\sqrt{ab}$=$\frac{1}{2}{(\sqrt{a}-\sqrt{b})}^2$>0.(10分)

点评 本题考查分析法与综合法证明不等式的方法,考查逻辑推理能力以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知等差数列{an}满足a1=1,a3+a7=18.
(1)求数列{an}的通项公式;
(2)若cn=2n-1an,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若关于x的二次不等式x2+mx+1≥0的解集为实数集R,则实数m的取值范围是(  )
A.m≤-2或m≥2B.-2≤m≤2C.m<-2或m>2D.-2<m<2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.(理)已知a2+c2-ac-3=0,则c+2a的最大值是(  )
A.2$\sqrt{3}$B.2$\sqrt{6}$C.2$\sqrt{7}$D.3$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.函数f(x)=$\frac{\sqrt{x-1}}{x}$的值域是$[0,\frac{1}{2}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=ln($\sqrt{1+4{x}^{2}}$-2x)+3,则f(lg2)+f(lg$\frac{1}{2}$)=(  )
A.0B.-3C.3D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知k>0,若函数f(x)=ax-kx-a,(a>0,a≠1)有且只有一个零点,则实数a的取值范围是(0,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若3x<1,则x的取值范围是(  )
A.(-1,0)B.(0,+∞)C.(0,1)∪(1,+∞)D.(-∞,0)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=Asin(ωx+φ)(其中A>0,ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示.
(Ⅰ)求函数y=f(x)的解析式;
(Ⅱ)求函数y=f(x)的单调增区间;
(Ⅲ)当x∈[-$\frac{π}{12}$,$\frac{π}{2}$],求f(x)的值域.

查看答案和解析>>

同步练习册答案