精英家教网 > 高中数学 > 题目详情

设直线l(斜率存在)交抛物线y2=2px(p>0,且p是常数)于两个不同点A(x1,y1),B(x2,y2),O为坐标原点,且满足数学公式=x1x2+2(y1+y2).
(1)若y1+y2=-1,求直线l的斜率与p之间的关系;
(2)求证:直线l过定点;
(3)设(1)中的定点为P,若点M在射线PA上,满足数学公式,求点M的轨迹方程.

解:(1)设直线l的方程为y=kx+b,由,得ky2-2py+2pb=0,
由题知k≠0,△=4p2-8kpb>0,且
又y1+y2=-1,∴k=-2p.
∴直线l的斜率k与p之间的关系为k=-p.

(2)由(1),有
+2(y1+y2),
∴y1y2=2(y1+y2).则,得b=2.
∴直线l的方程为y=kx+2.
∴直线l过定点(0,2).
(3)分别过点A、M、B向y轴作垂线,垂足分别为A′,M′,B′,
设M(x,y),由
可得
,∴
==
,∴
∵△=4p2-16kp>0,∴1<y<3,y≠2.
∵y=kx+2,∴
∴点M的轨迹方程为
分析:(1)设直线l的方程为y=kx+b,由,得ky2-2py+2pb=0,再由根的判别式和根与系数的关系,可知直线l的斜率与p之间的关系.
(2)由题设知,y1y2=2(y1+y2).则,得b=2.所以直线l的方程为y=kx+2.由此知直线l过定点(0,2).
(3)分别过点A、M、B向y轴作垂线,垂足分别为A,M’,B,设M(x,y),由,可得
.所以.由此入手可求出点M的轨迹方程.
点评:本题考查直线与圆锥曲线的综合应用问题,解题时要认真审题,仔细解答,注意公式的灵活运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设直线l(斜率存在)交抛物线y2=2px(p>0,且p是常数)于两个不同点A(x1,y1),B(x2,y2),O为坐标原点,且满足
OA
OB
=x1x2+2(y1+y2).
(1)若y1+y2=-1,求直线l的斜率与p之间的关系;
(2)求证:直线l过定点;
(3)设(1)中的定点为P,若点M在射线PA上,满足
1
|
PM
|
=
1
|
PA
|
+
1
|
PB
|
,求点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源:2011年四川省成都市毕业班摸底测试(文科)数学卷 题型:解答题

(本小题满分12分)设直线l(斜率存在)交抛物线y2=2pxp>0,且p是常数)于两个不同点Ax1y1),Bx2y2),O为坐标原点,且满足x1x2+2(y1y2).

   (1)求证:直线l过定点;

   (2)设(1)中的定点为P,若点M在射线PA上,满足,求点M

的轨迹方程.

 

查看答案和解析>>

科目:高中数学 来源:2010年内蒙古元宝山区高三第一次摸底考试理科数学卷 题型:解答题

(本小题满分12分)设直线l(斜率存在)交抛物线y2=2pxp>0,且p是常数)于两个不同点Ax1y1),Bx2y2),O为坐标原点,且满足x1x2+2(y1y2).

   (1)求证:直线l过定点;

   (2)设(1)中的定点为P,若点M在射线PA上,满足,求点M的轨迹方程.

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年四川省成都市高三摸底数学试卷(文科)(解析版) 题型:解答题

设直线l(斜率存在)交抛物线y2=2px(p>0,且p是常数)于两个不同点A(x1,y1),B(x2,y2),O为坐标原点,且满足=x1x2+2(y1+y2).
(1)若y1+y2=-1,求直线l的斜率与p之间的关系;
(2)求证:直线l过定点;
(3)设(1)中的定点为P,若点M在射线PA上,满足,求点M的轨迹方程.

查看答案和解析>>

同步练习册答案