试题分析:(1)利用正弦定理化简已知的等式,移项后再利用两角和与差的正弦函数公式及诱导公式化简,根据sinA不为0,得出cosB的值,由B为三角形的内角,利用特殊角的三角函数值即可求出B的度数;
(2)由第一问求出的B的度数,得出cosB的值,利用余弦定理表示出b
2,把b及cosB的值代入,配方后再把a+c的值代入可得出ac=6,与a+c=5联立成方程组,求出方程组的解即可求出a与c的值。根据正弦定理可知
=-
.,得到-sinBcosC=2cosBsinA+cosBsinC(3分)sinBcosC+cosBsinC+2cosBsinA=0,
sin(B+C)+2cosBsinA=0,(4分)sinA+2cosBsinA=0,(只要写出本行,给5分)(5分)因为sinA≠0,所以cosB=-
,所以B=120°;(7分)(2)由余弦定理得:b
2=a
2+c
2-2accosB,(9分)19=(a+c)
2-2ac-2accos120°,所以ac=6,(11分)由a+c=5,ac=6,可得a=2,c=3,或a=3,c=2.,故可知
,
点评:此题考查了正弦、余弦定理,两角和与差的正弦函数公式,以及特殊角的三角函数值,熟练掌握定理及公式是解本题的关键.