精英家教网 > 高中数学 > 题目详情
17.如图,在三棱柱ABC-A1B1C1中,底面△ABC是等边三角形,且AA1⊥平面ABC,D为AB的中点.
(Ⅰ) 求证:直线BC1∥平面A1CD;
(Ⅱ) 若AB=BB1=2,E是BB1的中点,求三棱锥A1-CDE的体积.

分析 (Ⅰ)连接AC1,交A1C于点F,由三角形中位线定理可得BC1∥DF,再由线面平行的判定可得BC1∥平面A1CD;
(Ⅱ)直接利用等积法求三棱锥A1-CDE的体积.

解答 (Ⅰ)证明:连接AC1,交A1C于点F,
则F为AC1的中点,又D为AB的中点,
∴BC1∥DF,
又BC1?平面A1CD,DF?平面A1CD,
∴BC1∥平面A1CD;
(Ⅱ)解:三棱锥A1-CDE的体积${V_{{A_1}-CDE}}={V_{C-{A_1}DE}}=\frac{1}{3}{S_{△{A_1}DE}}•h$.
其中三棱锥A1-CDE的高h等于点C到平面ABB1A1的距离,可知$h=CD=\sqrt{3}$.
又${S_{△{A_1}DE}}=2×2-\frac{1}{2}×1×2-\frac{1}{2}×1×1-\frac{1}{2}×1×2=\frac{3}{2}$.
∴${V_{{A_1}-CDE}}={V_{C-{A_1}DE}}=\frac{1}{3}{S_{△{A_1}DE}}•h=\frac{1}{3}×\frac{3}{2}×\sqrt{3}=\frac{{\sqrt{3}}}{2}$.

点评 本题考查直线与平面平行的判定,考查了空间想象能力和思维能力,训练了利用等积法求多面体的体积,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.如图,在三棱锥ABC-A1B1C1中,△ABC是边长为2的等边三角形,AA1=4,A1在底面ABC上的射影为BC的中点E,D是B1C1的中点.
(Ⅰ)证明:A1D⊥A1C;
(Ⅱ)求三棱柱ABC-A1B1C1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.“欧几里得算法”是有记载的最古老的算法,可追溯至公元前300年前,如图的程序框图的算法思路就是来源于“欧几里得算法”.执行改程序框图(图中“aMODb”表示a除以b的余数),若输入的a,b分别为675,125,则输出的a=(  )
A.0B.25C.50D.75

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知F1,F2分别是长轴长为2$\sqrt{2}$的椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左右焦点,A1,A2是椭圆C的左右顶点,P为椭圆上异于A1,A2的一个动点,O为坐标原点,点M为线段PA2的中点,且直线PA2与OM的斜率之积恒为-$\frac{1}{2}$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设过点F1且不与坐标轴垂直的直线l交椭圆于A,B两点,线段AB的垂直平分线与x轴交于点N,点N横坐标的取值范围是(-$\frac{1}{4}$,0),求线段AB长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.抛物线y2=4x的焦点为F,点A(5,3),M为抛物线上一点,且M不在直线AF上,则△MAF周长的最小值为(  )
A.10B.11C.12D.6+$\sqrt{29}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.公元263年左右,我国数学家刘徽发现,当圆内接正多边形的边数无限增加时,正多边形的周长可无限逼近圆的周长,并创立了割圆术,利用割圆术刘徽得到了圆周率精确到小数点后面两位的近似值3.14,这就是著名的徽率,利用刘徽的割圆术设计的程序框图如图所示,若输出的n=96,则判断框内可以填入(  )(参考数据:sin7.5°≈0.1305,sin3.75°≈0.06540,sin1.875°≈0.03272)
A.p≤3.14B.p≥3.14C.p≥3.1415D.p≥3.1415926

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知曲线C的极坐标方程为ρ=$\sqrt{\frac{2}{{1+{{sin}^2}θ}}}$,过点P(1,0)的直线l交曲线C于A,B两点.
(1)将曲线C的极坐标方程的化为普通方程;
(2)求|PA|•|PB|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知三个向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$共面,且均为单位向量,$\overrightarrow{a}$•$\overrightarrow{b}$=0,则|$\overrightarrow{a}$+$\overrightarrow{b}$-$\overrightarrow{c}$|的取值范围是(  )
A.[$\sqrt{2}$-1,$\sqrt{2}$+1]B.[1,$\sqrt{2}$]C.[$\sqrt{2}$,$\sqrt{3}$]D.[$\sqrt{2}$-1,1]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在△ABC中,∠A,∠B,∠C的对边分别为a,b,c,若tanA+tanC=$\sqrt{3}$(tanAtanC-1)
(Ⅰ)求角B
(Ⅱ)如果b=2,求△ABC面积的最大值.

查看答案和解析>>

同步练习册答案