精英家教网 > 高中数学 > 题目详情
甲、乙两名同学参加一项射击游戏,两人约定,其中任何一人每射击一次,击中目标得2分,未击中目标得0分.若甲、乙两名同学射击的命中率分别为
3
5
和p,且甲、乙两人各射击一次所得分数之和为2的概率为
9
20
,假设甲、乙两人射击互不影响
(1)求p的值;
(2)记甲、乙两人各射击一次所得分数之和为ξ,求ξ的分布列和数学期望.
(1)设“甲射击一次,击中目标”为事件A,
“乙射击一次,击中目标”为事件B,
“甲射击一次,未击中目标”为事件
.
A

“乙射击一次,未击中目标”为事件
.
B

则P(A)=
3
5
,P(
.
A
)=
2
5
,P(B)=P,P(
.
B
)=1-P
依题意得:
3
5
(1-P)+
2
5
P=
9
20

解得P=
3
4

故p的值为
3
4

(2)ξ的取值分别为0,2,4.
P(ξ=0)=P(
.
A
.
B
)=P(
.
A
)P(
.
B
)=
2
5
×
1
4
=
1
10

P(ξ=2)=
9
20

P(ξ=4)=P(AB)=P(A)P(B)=
3
5
×
3
4
=
9
20

∴ξ的分布列为

∴Eξ=
1
10
+2×
9
20
+4×
9
20
=
27
10
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(13分)将数字分别写在大小、形状都相同的张卡片上,将它们反扣后(数字向下),再从左到右随机的依次摆放,然后从左到右依次翻卡片:若第一次就翻出数字则停止翻卡片;否则就继续翻,若将翻出的卡片上的数字依次相加所得的和是的倍数则停止翻卡片;否则将卡片依次翻完也停止翻卡片.设翻卡片停止时所翻的次数为随机变量,求出的分布列和它的数学期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
某车间甲组有10名工人,其中有4名女工人;乙组有5名工人,其中有3名女工人,现采用分层抽样方法(层内采用不放回简单随机抽样)从甲、乙两组中共抽取3名工人进行技术考核.
(I)求从甲、乙两组各抽取的人数;          
(II)求从甲组抽取的工人中恰有1名女工人的概率;
(III)记表示抽取的3名工人中男工人数,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知随机变量ξ和η,其中η=10ξ+2,且E(η)=20,若ξ的分布列如下表,则m的值为(  )
ξ1234
P
1
4
mn
1
12
A.
47
60
B.
37
60
C.
27
60
D.
1
8

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知某随机变量ξ的概率分布列如表,其中x>0,y>0,随机变量ξ的方差Dξ=
1
2
,则x+y=______.
ξ123
PXyx

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在一次运动会中甲、乙两名射击运动员各射击十次的成绩(环)如下:
甲:9.4,8.7,7.5,8.4,10.1,10.5,10.7,7.2,7.8,10.8;
乙:9.1,8.7,7.1,9.8,9.7,8.5,10.1,9.2,10.1,9.1;
(1)用茎叶图表示甲,乙两个人的成绩;
(2)分别计算两个样本的平均数
.
x
和标准差s,并根据计算结果估计哪位运动员的成绩比较稳定.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

深圳市某校中学生篮球队假期集训,集训前共有6个篮球,其中3个是新球(即没有用过的球),3个是旧球(即至少用过一次的球).每次训练,都从中任意取出2个球,用完后放回.
(1)设第一次训练时取到的新球个数为ξ,求ξ的分布列和数学期望;
(2)求第二次训练时恰好取到一个新球的概率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

随机变量ξ服从二项分布ξ~B(16,P),且Dξ=3,则Eξ等于(  )
A.4B.12C.4或12D.3

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列概率特征数:①Eξ②E(aξ+b)③Dξ④D(aξ+b)⑤σξ⑥σ(aξ+b)(其中a,b为常数),其中与随机变量ξ必有相同单位的有(   )
A.1个B.2个C.3个D.4个

查看答案和解析>>

同步练习册答案