精英家教网 > 高中数学 > 题目详情

【题目】将函数y=cos(3x+ )的图象向左平移 个单位后,得到的图象可能为(
A.
B.
C.
D.

【答案】A
【解析】解:将函数y=cos(3x+ )的图象向左平移 个单位后, 得到的函数解析式为:y=cos[3(x+ )+ ]=﹣sin3x,
此函数过原点,为奇函数,排除C,D;
原点在此函数的单调递减区间上,故排除B.
故选:A.
【考点精析】本题主要考查了函数y=Asin(ωx+φ)的图象变换的相关知识点,需要掌握图象上所有点向左(右)平移个单位长度,得到函数的图象;再将函数的图象上所有点的横坐标伸长(缩短)到原来的倍(纵坐标不变),得到函数的图象;再将函数的图象上所有点的纵坐标伸长(缩短)到原来的倍(横坐标不变),得到函数的图象才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知圆M:x2+(y﹣4)2=4,点P是直线l:x﹣2y=0上的一动点,过点P作圆M的切线PA,PB,切点为A,B.
(1)当切线PA的长度为 时,求点P的坐标;
(2)若△PAM的外接圆为圆N,试问:当P在直线l上运动时,圆N是否过定点?若存在,求出所有的定点的坐标;若不存在,说明理由.
(3)求线段AB长度的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现有8名奥运会志愿者,其中志愿者A1 , A2 , A3通晓日语,B1 , B2 , B3通晓俄语,C1 , C2通晓韩语.从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组.
(1)求A1被选中的概率;
(2)求B1和C1不全被选中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,底面ABCD是边长为1的正方形,侧棱PA的长为2,且PA与AB,AD的夹角都等于60°,M是PC的中点,设 = = =

(1)试用 表示出向量
(2)求BM的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若(a+b+c)(b+c﹣a)=3ab,且sinA=2sinBcosC,那么△ABC是(
A.直角三角形
B.等边三角形
C.等腰三角形
D.等腰直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 满足:| |=2,| |=4
(1)若( =﹣20,求向量 的夹角及|3 + |
(2)在矩形ABCD中,CD的中点为E,BC的中点为F,设 = = ,试用向量 表示 ,并求 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC 中,角A,B,C所对的边分別为a,b,c,且asin Acos C+csin AcosA= c
(1)若c=1,sin C= ,求△ABC的面积S
(2)若D 是AC的中点且cosB= ,BD= ,求△ABC的最短边的边长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知Sn为等差数列{an}的前n项和,a1=25,a4=16,当n=时,Sn取得最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知ACDE是直角梯形,且ED∥AC,平面ACDE⊥平面ABC,∠BAC=∠ACD=90°,AB=AC=AE=2, ,P是BC的中点. (Ⅰ)求证:DP∥平面EAB;
(Ⅱ)求平面EBD与平面ABC所成锐二面角大小的余弦值.

查看答案和解析>>

同步练习册答案