【题目】(本小题满分14分)
在中,角的对边分别为已知,且成等比数列.求:
(1) 的值;
(2) 的值;
(3) 的值.
【答案】(1) (2) (3)
【解析】试题分析:首先已知条件要合理变形,左边角有,因此右边的角A要转化为 ,利用和差角公式恒等变形得出,利用成等比,利用正弦定理“边转角”结合第一步结论,求出角,根据角的余弦求出,进而得出.
试题解析:
(1) 因为A+B+C=π,所以A=π-(B+C).
由cos(B-C)=1-cosA,得cos(B-C)=1+cos(B+C),
展开,整理得sinB·sinC=.
(2) 因为b,a,c成等比数列,所以a2=bc.
由正弦定理,得sin2A=sinBsinC,从而sin2A=.
因为A∈(0,π),所以sinA= .
因为a边不是最大边,所以A= .
(3) 因为B+C=π-A= ,
所以cos(B+C)=cosBcosC-sinBsinC= ,
从而cosBcosC= .
所以tanB+tanC= =
= =-2-.
科目:高中数学 来源: 题型:
【题目】若函数f(x)为定义在R上的奇函数,且在(0,+∞)内是增函数,又f(2)=0,则不等式x5f(x)>0的解集为( )
A.(﹣2,0)∪(2,+∞)
B.(﹣∞,﹣2)∪(0,2)
C.(﹣2,0)∪(0,2)
D.(﹣∞,﹣2)∪(2,+∞)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,已知圆M过坐标原点O且圆心在曲线 上.
(1)若圆M分别与x轴、y轴交于点A、B(不同于原点O),求证:△AOB的面积为定值;
(2)设直线 与圆M 交于不同的两点C,D,且|OC|=|OD|,求圆M的方程;
(3)设直线 与(Ⅱ)中所求圆M交于点E、F,P为直线x=5上的动点,直线PE,PF与圆M的另一个交点分别为G,H,求证:直线GH过定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】综合题。
(1)已知直线l经过点P(4,1),且在两坐标轴上的截距相等,求直线l的方程;
(2)已知直线l经过点P(3,4),且直线l的倾斜角为θ(θ≠90°),若直线l经过另外一点(cosθ,sinθ),求此时直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分16分)已知函数在处的切线方程为
(1)若= ,求证:曲线上的任意一点处的切线与直线和直线
围成的三角形面积为定值;
(2)若,是否存在实数,使得对于定义域内的任意都成立;
(3)在(2)的条件下,若方程有三个解,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在△ABC中,∠C=60°,D是BC上一点,AB=31,BD=20,AD=21.
(1)求cos∠B的值;
(2)求sin∠BAC的值和边BC的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}的首项为1,前n项和Sn与an之间满足an= (n≥2,n∈N*)
(1)求证:数列{ }是等差数列;
(2)求数列{an}的通项公式;
(3)设存在正整数k,使(1+S1)(1+S1)…(1+Sn)≥k 对于一切n∈N*都成立,求k的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com