精英家教网 > 高中数学 > 题目详情
已知双曲线
x2
a2
-
y2
b2
(a>0,b>0)的离心率e=2,过双曲线上一点M作直线MA,MB交双曲线于A,B两点,且斜率分别为k1,k2.若直线AB过原点,则k1•k2的值为(  )
分析:设出M、N、P,表示出k1•k2,M、N、P代入双曲线方程并化简,代入双曲线的离心率乘积,求出k1•k2的值.
解答:解:因为过双曲线上一点M作直线MA,MB交双曲线于A,B两点,且斜率分别为k1,k2.若直线AB过原点,
所以A、B关于原点对称,
设M(p,q),N(-p,-q),P(s,t),
则有k1•k2=
t-q
s-p
t+q
 s+p 
=
t2-q2
s2-p2

p2
a2
-
q2
b2
=1
s2
a2
-
t2
b2
=1

两式相等得:
p2
a2
-
q2
b2
=
s2
a2
-
t2
b2

t2-q2
b2
=
s2-p2
a2
t2-q2
s2-p2
=
b2
a2

k1•k2=
t2-q2
s2-p2
=
b2
a2
=
c2-a2
a2
=22-1=3.
故选B.
点评:本题考查双曲线的标准方程,以及双曲线的简单性质,考查转化思想,化简得到 K1•K2是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
7
=1
,直线l过其左焦点F1,交双曲线的左支于A、B两点,且|AB|=4,F2为双曲线的右焦点,△ABF2的周长为20,则此双曲线的离心率e=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
b2
=1
的一个焦点与抛物线y2=4x的焦点重合,且该双曲线的离心率为
5
,则该双曲线的渐近线方程为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
b2
=1(b>a>0)
,O为坐标原点,离心率e=2,点M(
5
3
)
在双曲线上.
(1)求双曲线的方程;
(2)若直线l与双曲线交于P,Q两点,且
OP
OQ
=0
.问:
1
|OP|2
+
1
|OQ|2
是否为定值?若是请求出该定值,若不是请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知直线l:kx-y+1+2k=0(k∈R),则该直线过定点
(-2,1)
(-2,1)

(2)已知双曲线
x2
a2
-
y2
b2
=1的一条渐近线方程为y=
4
3
x,则双曲线的离心率为
5
3
5
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
b2
=1
(a>0,b>0)满足
a1
b
2
 |=0
,且双曲线的右焦点与抛物线y2=4
3
x
的焦点重合,则该双曲线的方程为
 

查看答案和解析>>

同步练习册答案