精英家教网 > 高中数学 > 题目详情
14.如图,在空间四边形ABCD中,AC,BD为其对角线,E,F,G,H分别为AC,BC,BD,AD上的点,若四边形EFGH为平行四边形,求证:AB∥平面EFGH.

分析 利用线面平行的判定定理证明EF∥平面ABD,再用性质定理证明EF∥AB,从而证明AB∥平面EFGH.

解答 证明:如图所示,
∵四边形EFGH为平行四边形,
∴EF∥GH,
又∵EF?平面ABD,GH?平面ABD,
∴EF∥平面ABD;
又∵平面ABC∩平面ABD=AB,
∴EF∥AB;
又AB?平面EFGH,EF?平面EFGH,
∴AB∥平面EFGH.

点评 本题考查了线面平行的判定与性质定理的应用问题,也考查了推理能力和空间想象能力,是中档题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.已知椭圆$\frac{{x}^{2}}{4}$+y2=1上任意一点P及点A(0,2),则|PA|的最大值为$\frac{2\sqrt{21}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.关于函数f(x)=x3-x的奇偶性,正确的说法是(  )
A.f(x)是奇函数但不是偶函数B.f(x)是偶函数但不是奇函数
C.f(x)是奇函数又是偶函数D.f(x)既不是奇函数也不是偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=cosx•sin(x+$\frac{π}{3}$)-$\sqrt{3}$cos2x+$\frac{\sqrt{3}}{4}$,x∈R.
(1)求f(x)的最小正周期;
(2)当方程f(x)-4a=0在闭区间[-$\frac{π}{4}$,$\frac{π}{4}$]上有两个不同的根时,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若tanα=$\frac{3}{4}$,α为第三象限角,则sinα=-$\frac{3}{5}$;cotα=$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设函数f(x)=ex+$\frac{x}{x+1}$,g(x)=f(x)-x=21-h(x),当x>0时,下列判断正确的是(  )
A.g(x)>h(x)B.g(x)≥h(x)C.g(x)<h(x)D.g(x)≤h(x)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知$\overrightarrow{a}$=3$\overrightarrow{e}$1-5$\overrightarrow{e}$2 ,$\overrightarrow{b}$=$\frac{1}{5}$$\overrightarrow{e}$1-$\frac{1}{3}$$\overrightarrow{e}$2,则$\overrightarrow{a}$与$\overrightarrow{b}$的关系是$\overrightarrow{a}=15\overrightarrow{b}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知点A(a,0),B(b,0),则向量|$\overrightarrow{AB}$|=(  )
A.|a-b|B.a-bC.b-aD.$\sqrt{{a}^{2}+{b}^{2}}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知f(x)是定义在R上的奇函数,又是周期为2的周期函数,当x∈[0,1)时,f(x)=2x-1,则f(-log26)的值为-$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案