精英家教网 > 高中数学 > 题目详情
定义在R上的函数f(x)对任意实数x满足f(x+1)=f(-x-1)与f(x+1)=f(x-1),且当x∈[3,4]时,f(x)=x-2,则(  )
A、f(sin
1
2
)<f(cos
1
2
)
B、f(sin
1
3
)<f(cos
1
3
)
C、f(sin
π
3
)>f(cos
π
3
)
D、f(sin1)<f(cos1)
分析:先通过给定条件确定函数为偶函数且是以2为周期的周期函数,然后确定函数f(x)在区间(0,1)的增减性进而得到答案.
解答:解:由于在R上的函数f(x)对任意实数x满足f(x+1)=f(-x-1),说明f(x)是偶函数; f(x+1)=f(x-1),推出f(x)=f(x+2),说明f(x)是以2为周期的函数; x属于(3,4)时,f(x)=x-2,由于f(x)以2为周期,可得在(-1,0)上f(x)=x-2;
又由于f(x)是偶函数,所以在(0,1)上f(x)=-x-2,是减函数.(所给四个选项的定义域均为(0,1)) A和B中1/2和1/3的情况相同,大于0小于π/4,sin值小于cos值,因为f是减函数,所以都应该是前者大于后者. C和D中的π/3和1,大于π/4小于1,sin值大于cos值,因为f是减函数,所以应该是前者小于后者,于是,只有D是正确的.
故选D.
点评:本题主要考查函数的基本性质--周期性和对称性.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义在R上的函数f(x)既是偶函数又是周期函数,若f(x)的最小正周期是π,且当x∈[0,
π
2
]时,f(x)=sinx,则f(
3
)的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

20、已知定义在R上的函数f(x)=-2x3+bx2+cx(b,c∈R),函数F(x)=f(x)-3x2是奇函数,函数f(x)在x=-1处取极值.
(1)求f(x)的解析式;
(2)讨论f(x)在区间[-3,3]上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的函数f(x)满足:f(x+2)=
1-f(x)1+f(x)
,当x∈(0,4)时,f(x)=x2-1,则f(2010)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)=Acos(ωx+φ)(A>0,ω>0,|φ|≤
π
2
),最大值与最小值的差为4,相邻两个最低点之间距离为π,函数y=sin(2x+
π
3
)图象所有对称中心都在f(x)图象的对称轴上.
(1)求f(x)的表达式;    
(2)若f(
x0
2
)=
3
2
(x0∈[-
π
2
π
2
]),求cos(x0-
π
3
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)的图象是连续不断的,且有如下对应值表:
x 0 1 2 3
f(x) 3.1 0.1 -0.9 -3
那么函数f(x)一定存在零点的区间是(  )

查看答案和解析>>

同步练习册答案