精英家教网 > 高中数学 > 题目详情

【题目】设数列的前项和为,若,则称是“紧密数列”.

1)若数列是“紧密数列”,且,求的取值范围;

2)若为等差数列,首项,公差,且,判断是否为“紧密数列”,并说明理由;

3)设数列是公比为的等比数列,若数列都是“紧密数列”,求的取值范围.

【答案】(1)(2)是“紧密数列”,详见解析(3)

【解析】

(1) 可求出的取值范围;

(2),所以

,根据“紧密数列”的定义即可得到结论;

(3)根据”是紧密函数”可得,再对 三种情况套,结合“紧密数列”的定义可得.

1)由题意得:,解得.

所以的取值范围是.

2)由题意得,所以

,

因为随着的增大而减小,所以时,取得最大值,所以 ,

所以是“紧密数列”.

3)由数列是公比为的等比数列,得

因为是“紧密数列”,所以.

①当时,,因为,所以时,数列为“紧密数列”,故满足题意.

②当时,,则,因为数列为“紧密数列”,

所以,对任意恒成立.

i)当时,

,对任意恒成立.

因为,所以

所以

所以,当时,,对任意恒成立.

ii)当时,,即,对任意恒成立.

所以当,成立,,所以 ,

所以,这与相矛盾,此时不存在.

综上所述,的取值范围是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆的左、右焦点分别为,以线段为直径的圆与椭圆交于点.

1)求椭圆的方程;

2)过轴正半轴上一点作斜率为的直线.

①若与圆和椭圆都相切,求实数的值;

②直线轴左侧交圆于两点,与椭圆交于点(从上到下依次为),且,求实数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某饮料生产企业为了占有更多的市场份额,拟在2017年度进行一系列促销活动,经过市场调查和测算,饮料的年销售量x万件与年促销费t万元间满足.已知2017年生产饮料的设备折旧,维修等固定费用为3万元,每生产1万件饮料需再投入32万元的生产费用,若将每件饮料的售价定为其生产成本的150%与平均每件促销费的一半之和,则该年生产的饮料正好能销售完.

(1)2017年的利润y(万元)表示为促销费t(万元)的函数;

(2)该企业2017年的促销费投入多少万元时,企业的年利润最大?

(注:利润=销售收入-生产成本-促销费,生产成本=固定费用+生产费用)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.在如图所示的阳马中,侧棱底面,且,点 的中点,连接.

1)证明:平面

2)证明:平面.试判断四面体是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,请说明理由;

3)记阳马的体积为,四面体的体积为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列的前项和为,且.

(1)求数列的通项公式

(2)设,若对一切正整数,不等式恒成立,求实数的取值范围;.

(3)是否存在正整数,使得。成等比数列?若存在,求出所有的;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若函数fx)有两个零点,求实数a的取值范围;

(2)若a=3,且对任意的x1∈[-1,2],总存在,使gx1)-fx2)=0成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某租车公司给出的财务报表如下:

年度

项目

2014

1-12月)

2015

1-12月)

2016

1-11月)

接单量(单)

14463272

40125125

60331996

油费(元)

214301962

581305364

653214963

平均每单油费(元)

14.82

14.49

平均每单里程(公里)

15

15

每公里油耗(元)

0.7

0.7

0.7

有投资者在研究上述报表时,发现租车公司有空驶情况,并给出空驶率的计算公式为.

1)分别计算20142015年该公司的空驶率的值(精确到0.01%);

22016年该公司加强了流程管理,利用租车软件,降低了空驶率并提高了平均每单里程,核算截止到1130日,空驶率在2015年的基础上降低了20个百分点,问2016年前11个月的平均每单油费和平均每单里程分别为多少?(分别精确到0.01元和0.01公里).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数由方程确定,下列结论正确的是________(请将你认为正确的序号都填上)

上的单调递减函数;

对于任意恒成立;

对于任意,关于的方程都有解;

存在反函数,且对任意,总有成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的两个焦点分别为,长轴长为

)求椭圆的标准方程及离心率;

)过点的直线与椭圆交于两点,若点满足,求证:由点 构成的曲线关于直线对称.

查看答案和解析>>

同步练习册答案