【题目】已知:已知函数
(Ⅰ)若曲线y=f(x)在点P(2,f(2))处的切线的斜率为﹣6,求实数a;
(Ⅱ)若a=1,求f(x)的极值;
【答案】(1)-2; (2)极小值为,极大值为.
【解析】分析:(1)求出曲线y=f(x)在点P(2,f(2))处的导数值等于切线的斜率为﹣6,即可求出;
(2)通过a=1时,利用导函数为0,判断导数符号,即可求f(x)的极值.
详解:(Ⅰ)因为f′(x)=﹣x2+x+2a,
曲线y=f(x)在点P(2,f(2))处的切线的斜率k=f′(2)=2a﹣2,
2a﹣2=﹣6,a=﹣2
(Ⅱ)当a=1时, ,f′(x)=﹣x2+x+2=﹣(x+1)(x﹣2)
x | (﹣∞,﹣1) | ﹣1 | (﹣1,2) | 2 | (2,+∞) |
f′(x) | ﹣ | 0 | + | 0 | ﹣ |
f(x) | 单调减 |
| 单调增 |
| 单调减 |
所以f(x)的极大值为 ,f(x)的极小值为 .
科目:高中数学 来源: 题型:
【题目】将函数f(x)=cos(2x)的图象向左平移个单位长度后,得到函数g(x)的图象,则下列结论中正确的是_____.(填所有正确结论的序号)
①g(x)的最小正周期为4π;
②g(x)在区间[0,]上单调递减;
③g(x)图象的一条对称轴为x;
④g(x)图象的一个对称中心为(,0).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】求经过直线L1:3x + 4y – 5 = 0与直线L2:2x – 3y + 8 = 0的交点M,且满足下列条件的直线方程
(1)与直线2x + y + 5 = 0平行 ;
(2)与直线2x + y + 5 = 0垂直;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着我国经济模式的改变,电商已成为当今城乡种新型的购销平台.已知经销某种商品的电商在任何一个销售季度内,每售出吨该商品可获利润万元,未售出的商品,每吨亏损万元根据往年的销售资料,得到该商品一个销售季度内市场需求量的频率分布直方图如图所示.已知电商为下一个销售季度筹备了吨该商品,现以单位:吨,)表示下一个销售季度的市场需求量,(单位:万 元)表示该电商下“个销售季度内经销该商品获得的利润.
(1)视分布在各区间内的频率为相应的概率,求;
(2)将表示为的函数,求出该函数表达式;
(3)在频率分布直方图的市场需求量分组中,若以市场需求量落入该区间的频率作为市场需求量的概率,求该季度利润不超过万元的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,五面体ABCDE中,四边形ABDE是菱形,△ABC是边长为2的正三角形,∠DBA=60°, .
(1)证明:DC⊥AB;
(2)若点C在平面ABDE内的射影H,求CH与平面BCD所成的角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙两袋中各装有大小相同的小球9个,其中甲袋中红色、黑色、白色小球的个数分别为2、3、4,乙袋中红色、黑色、白色小球的个数均为3,某人用左手从甲袋中取球,用右手从乙袋中取球,
(1)若左右手各取一球,求两只手中所取的球颜色不同的概率;
(2)若一次在同一袋中取出两球,如果两球颜色相同则称这次取球获得成功。某人第一次左手先取两球,第二次右手再取两球,记两次取球的获得成功的次数为随机变量X,求X的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某科研课题组通过一款手机APP软件,调查了某市1000名跑步爱好者平均每周的跑步量(简称“周跑量”),得到如下的频数分布表
周跑量(km/周) | |||||||||
人数 | 100 | 120 | 130 | 180 | 220 | 150 | 60 | 30 | 10 |
(1)在答题卡上补全该市1000名跑步爱好者周跑量的频率分布直方图:
注:请先用铅笔画,确定后再用黑色水笔描黑
(2)根据以上图表数据计算得样本的平均数为,试求样本的中位数(保留一位小数),并用平均数、中位数等数字特征估计该市跑步爱好者周跑量的分布特点
(3)根据跑步爱好者的周跑量,将跑步爱好者分成以下三类,不同类别的跑者购买的装备的价格不一样,如下表:
周跑量 | 小于20公里 | 20公里到40公里 | 不小于40公里 |
类别 | 休闲跑者 | 核心跑者 | 精英跑者 |
装备价格(单位:元) | 2500 | 4000 | 4500 |
根据以上数据,估计该市每位跑步爱好者购买装备,平均需要花费多少元?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】保险公司统计的资料表明:居民住宅距最近消防站的距离(单位:千米)和火灾所造成的损失数额(单位:千元)有如下的统计资料:
(1)请用相关系数(精确到0.01)说明与之间具有线性相关关系;
(2)求关于的线性回归方程(精确到0.01);
(3)若发生火灾的某居民区距最近的消防站10.0千米,请评估一下火灾损失(精确到0.01).
参考数据:,,,
,
参考公式:
回归直线方程为,其中,,为样本平均值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在极坐标系中,曲线C的方程为 ,点 ,以极点为原点,极轴为x轴的正半轴,建立平面直角坐标系,两坐标系中取相同的长度单位.
(1)求曲线C的直角坐标方程及点R的直角坐标;
(2)设P为曲线C上一动点,以PR为对角线的矩形PQRS的一边垂直于极轴,求矩形PQRS周长的最小值及此时点P的直角坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com