A. | 1 | B. | -1 | C. | -5 | D. | -21 |
分析 问题转化为a≤-x3+3x-3在x∈[-2,3]恒成立,令f(x)=-x3+3x-3,x∈[-2,3],根据函数的单调性求出a的最大值即可.
解答 解:若关于x的不等式x3-3x+3+a≤0恒成立,
则a≤-x3+3x-3在x∈[-2,3]恒成立,
令f(x)=-x3+3x-3,x∈[-2,3],
则f′(x)=-3x2+3=-3(x+1)(x-1),
令f′(x)>0,解得:-1<x<1,
令f′(x)<0,解得:x>1或x<-1,
故f(x)在[-2,-1)递减,在(-1,1)递增,在(1,2]递减,
而 f(-2)=-1,f(-1)=-5,f(1)=-1,f(2)=-5,
故a≤-5,
故a的最大值是-5,
故选:C.
点评 本题考查了函数的单调性、最值问题,考查导数的应用以及函数恒成立问题,是一道中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 奇函数 | B. | 偶函数 | ||
C. | 非奇非偶函数 | D. | 既是奇函数又是偶函数 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{3}{4}$ | B. | $\frac{17}{24}$ | C. | $\frac{2}{3}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源:2015-2016学年江西省南昌市高二文下学期期末考试数学试卷(解析版) 题型:选择题
已知函数y=f(x)在R上为奇函数,且当x≥0时,f(x)=x2﹣2x,则当x<0时,f(x)的解析式是( )
A.f(x)=﹣x(x+2) B.f(x)=x(x﹣2)
C.f(x)=﹣x(x﹣2) D.f(x)=x(x+2)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com