精英家教网 > 高中数学 > 题目详情
14.求双曲线C:x2-$\frac{{y}^{2}}{64}$=1经过φ:$\left\{\begin{array}{l}{x′=3x}\\{2y′=y}\end{array}\right.$变换后所得曲线C′的焦点坐标.

分析 由已知得$\left\{\begin{array}{l}{x=\frac{1}{3}{x}^{'}}\\{y=2{y}^{'}}\end{array}\right.$,代入双曲线C得到曲线C′的标准方程,由此能求出曲线C′的焦点坐标.

解答 解:∵$\left\{\begin{array}{l}{x′=3x}\\{2y′=y}\end{array}\right.$,∴$\left\{\begin{array}{l}{x=\frac{1}{3}{x}^{'}}\\{y=2{y}^{'}}\end{array}\right.$,
代入双曲线C:x2-$\frac{{y}^{2}}{64}$=1,得$\frac{{{x}^{'}}^{2}}{9}$-$\frac{{{y}^{'}}^{2}}{16}$=1.
∴a=3,b=4,c=$\sqrt{9+16}$=5,
∴曲线C′的焦点坐标为F1(-5,0),F2(5,0).

点评 本题考查伸缩变换的应用,是基础题,解题时要认真审题,注意双曲线的简单性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=asinxcosx-cos2x的图象过点$(\frac{π}{8},0)$,
(1)求函数y=f(x)的单调减区间;
(2)求函数y=f(x)在$[{0,\;\;\frac{π}{2}}]$上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设椭圆M:$\frac{y^2}{a^2}+\frac{x^2}{b^2}=1$(a>b>0)的离心率与双曲线x2-y2=1的离心率互为倒数,且椭圆的长轴长为4.
(1)求椭圆M的方程;
(2)若直线y=$\sqrt{2}$x+m交椭圆M于A,B两点,P(1,$\sqrt{2}$)为椭圆M上一点,求△PAB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设数列{an}的前n项和为Sn=$\frac{4}{3}$an-$\frac{{2}^{n+1}}{3}$+$\frac{2}{3}$,求an及Tn=$\sum_{k=1}^{n}\frac{{2}^{k}}{{S}_{k}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.不等式$\sqrt{\frac{{a}^{2}+{b}^{2}}{2}}$-$\sqrt{ab}$≥λ($\frac{a+b}{2}$-$\sqrt{ab}$)对任意非负实数a.b恒成立,则正数λ的取值范围为(  )
A.(0,1]B.(0,$\frac{\sqrt{6}}{2}$]C.(0,$\sqrt{2}$]D.(0,2]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知函数f(x)=$\frac{1}{\sqrt{1-x}}$的定义域为M,g(x)=ln(1+x)的定义域为N,则M∩N=(-1,1);M∪N=R.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=$\frac{cx-1}{x+1}$(c为常数),且f(1)=0.
(1)求c的值;
(2)证明函数f(x)在[0,2]上是单调递增函数;
(3)已知函数g(x)=f(ex),判断函数g(x)的奇偶性.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.幂函数y=f(x)的图象经过点(9,3),则此幂函数的解析式为f(x)=$\sqrt{x}$,x≥0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.定义在[1,+∞)上的函数f(x)满足:(1)f(2x)=2f(x);(2)当2≤x≤4时,f(x)=1-|x-3|.则集合A={x|f(x)=f(61)}中的最小元素是(  )
A.13B.11C.9D.6

查看答案和解析>>

同步练习册答案