精英家教网 > 高中数学 > 题目详情
1.设数列{an}的前n项和Sn=aqn+b(a,b为非零实数,q≠0且q≠1).
(1)当a,b满足什么关系式,{an}是等比数列;
(2)若{an}为等比数列,证明:以(an,Sn)为坐标的点都落在同一条直线上.

分析 (1)当a+b=0时,a1=S1=a(q-1).当n≥2时,an=Sn-Sn-1=aqn-1(q-1).当n=1时也成立.于是数列{an}为等比数列;
(2)运用等比数列的通项和求和公式的关系,即可得证.

解答 解:(1)当a,b满足a+b=0,{an}是等比数列.
理由:当a+b=0时,a1=S1=aq+b=a(q-1).
当n≥2时,an=Sn-Sn-1=aqn-1(q-1).
当n=1时也成立.
于是$\frac{{a}_{n+1}}{{a}_{n}}$=$\frac{a{q}^{n}(q-1)}{a{q}^{n-1}(q-1)}$=q(n∈N+),
即数列{an}为等比数列;
(2)证明:若{an}为等比数列,设公比为q,q≠1,
则Sn=$\frac{{a}_{1}(1-{q}^{n})}{1-q}$=$\frac{{a}_{1}-{a}_{1}{q}^{n}}{1-q}$=$\frac{{a}_{1}-{a}_{n}q}{1-q}$
=$\frac{{a}_{1}}{1-q}$-$\frac{q}{1-q}$an
即有以(an,Sn)为坐标的点都落在同一条直线
y=$\frac{{a}_{1}}{1-q}$-$\frac{q}{1-q}$x上.

点评 本题考查等比数列的通项和求和公式的运用,解题时要认真审题,仔细解答,注意挖掘题设中的隐含条件,合理地进行等价转化.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.直线x-ysinθ+1=0(θ∈R)的倾斜角范围是$[\frac{π}{4},\frac{3π}{4}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知点A(x1,x${\;}_{1}^{2}$),B(x2,x${\;}_{2}^{2}$)是抛物线y=x2上任意不同的两点,线段AB总是位于A,B两点之间函数图象的上方,因此有结论$\frac{{x}_{1}^{2}+{x}_{2}^{2}}{2}$>$\frac{({x}_{1}+{x}_{2})^{2}}{2}$2成立,运用类比的方法可知,若点A(x1,sinx1),B(x2,sinx2)是函数y=sinx(x∈(0,π))图象上不同的两点,线段AB总是位于A,B两点之间函数y=sinx(x∈(0,π))图象的下方,则类似地有结论$\frac{sin{x}_{1}+sin{x}_{2}}{2}$<sin$\frac{{x}_{1}+{x}_{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=x2+|x+1-a|,其中a为实常数.
(1)判断f(x)的奇偶性;
(2)若对于任意x∈R,使不等式f(x)>2|x-a|恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.用数归纳法证明当n为正奇数时,xn+yn能被x+y整除,k∈N*第二步是(  )
A.设n=2k+1时正确,再推n=2k+3正确
B.设n=2k-1时正确,再推n=2k+1时正确
C.设n=k时正确,再推n=k+2时正确
D.设n≤k(k≥1)正确,再推n=k+2时正确

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.代数式(1+x+px210的展开式中,试求使x4项的系数最小时p的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.求下列函数的值域.
(1)f(x)=$\frac{3x+2}{4x-1}$;
(2)f(x)=$\frac{3x}{2{x}^{2}+2x+1}$;
(3)f(x)$\frac{3{x}^{2}+2x+1}{2{x}^{2}+2x+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知点A(x1,f(x1)),B(x2,f(x2))是函数f(x)=2x的图象上任意不同的两点,依据图象可知,线段AB总是位于A,B两点之间函数图象的上方,因此有结论$\frac{f({x}_{1})+f({x}_{2})}{2}$>f($\frac{{x}_{1}+{x}_{2}}{2}$)成立.运用类比的思想方法可得下列结论
(1)f(x)=sinx,(0<x<π)有$\frac{f({x}_{1})+f({x}_{2})}{2}$>f($\frac{{x}_{1}+{x}_{2}}{2}$)成立
(2)f(x)=lnx有$\frac{f({x}_{1})+f({x}_{2})}{2}$<f($\frac{{x}_{1}+{x}_{2}}{2}$)成立
(3)f(x)=x3,(x>0)有$\frac{f({x}_{1})+f({x}_{2})}{2}$>f($\frac{{x}_{1}+{x}_{2}}{2}$)成立
(4)f(x)=tanx,(0<x<$\frac{π}{2}$)有$\frac{f({x}_{1})+f({x}_{2})}{2}$>f($\frac{{x}_{1}+{x}_{2}}{2}$)成立
其中,正确的结论的个数为(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.执行如图所示的程序框图,如果输入的t=0.01,则输出的n=(  )
A.5B.6C.7D.8

查看答案和解析>>

同步练习册答案