分析 (I)证明△ABC为正三角形,可得AE⊥BC,根据BC∥AD,可得AE⊥AD.又PA⊥AE,且PA∩AD=A,所以AE⊥平面PAD,进而可得答案.
(II)建立坐标系,利用题中的已知条件分别求出两个平面的法向量,借助于向量的有关运算计算出向量的夹角,再转化为二面角的平面角.
解答 证明:(Ⅰ)∵四边形ABCD为菱形,∠ABC=60°,
∴△ABC为正三角形.
∵E为BC的中点,∴AE⊥BC,
又BC∥AD,∴AE⊥AD,
∵PA⊥平面ABCD,AE?平面ABCD,
∴PA⊥AE,
又PA?平面PAD,AD?平面PAD,且PA∩AD=A,
∴AE⊥平面PAD
又PD?平面PAD,∴AE⊥PD.
解:(Ⅱ)由(Ⅰ)知AE,AD,AP两两垂直,以A为坐标原点,建立如图所示的空间直角坐标系,
又E,F分别为BC,PC的中点,∵AB=BC=CD=DA=AP=2,∴AE=$\sqrt{3}$,
∴A(0,0,0),B($\sqrt{3}$,-1,0),C($\sqrt{3}$,1,0),D(0,2,0),P(0,0,2),E($\sqrt{3}$,0,0),
设F(a,b,c),$\overrightarrow{PF}=λ\overrightarrow{PC}$(0≤λ≤1),则(a,b,c-2)=($\sqrt{3}λ,λ$,-2λ),解得a=$\sqrt{3}λ$,b=λ,c=2,∴F($\sqrt{3}λ,λ$,2-2λ),
∴$\overrightarrow{AE}$=($\sqrt{3}$,0,0),$\overrightarrow{AF}$=($\sqrt{3}λ,λ$,2-2λ).
设平面AEF的一法向量为$\overrightarrow{m}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{AE}=\sqrt{3}x=0}\\{\overrightarrow{m}•\overrightarrow{AF}=\sqrt{3}λx+λy-(2-2λ)z=0}\end{array}\right.$,取z=-1,得$\overrightarrow{m}$=(0,$\frac{2-2λ}{λ}$,-1),
∵BD⊥AC,BD⊥PA,PA∩AC=A,∴BD⊥平面AFC,
∴$\overrightarrow{BD}$=(-$\sqrt{3}$,3,0)是平面AFC的一法向量.
∵二面角E-AF-C的余弦值为$\frac{\sqrt{15}}{5}$,
∴$\frac{\sqrt{15}}{5}$=$\frac{|\overrightarrow{BD}•\overrightarrow{m}|}{|\overrightarrow{BD}|•|\overrightarrow{m}|}$=$\frac{3×\frac{2-2λ}{λ}}{\sqrt{12}•\sqrt{(\frac{2-2λ}{λ})^{2}+1}}$,
由0≤λ≤1,解得λ=$\frac{1}{2}$,
∴在线段PC上存在中点F使二面角E-AF-C的余弦值为$\frac{\sqrt{15}}{5}$.
点评 解决此类问题的关键是熟练掌握几何体的结构特征,以便利用已知条件得到空间的线面关系,并且便于建立坐标系利用向量的有关运算解决空间角等问题.
科目:高中数学 来源: 题型:选择题
A. | $\frac{π}{4}$ | B. | $\frac{π}{3}$ | C. | $\frac{5π}{12}$ | D. | $\frac{π}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 有最大值,无最小值 | B. | 无最大值,有最小值 | ||
C. | 有最大值,有最小值 | D. | 无最大值,无最小值 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 1 | B. | 1+2 | C. | 1+2+22 | D. | 1+2+22+23 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 0 | B. | 1002 | C. | 200 | D. | 100×99×…×2×1 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com