精英家教网 > 高中数学 > 题目详情
已知命题p:A={x||x-a|<4},命题q:B={x|(x-2)(3-x)>0},若p是q的必要条件,则实数a的取值范围是
[-1,6]
[-1,6]
分析:先化简集合A,B,利用p是q的必要条件,确定不等条件,然后求解即可.
解答:解:B={x|(x-2)(3-x)>0}={x|(x-2)(x-3)<0}={x|2<x<3},
A={x||x-a|<4}={x|-4<x-a<4}=A={x|a-4<x<a+4},
∵p是q的必要条件,∴q⇒p,即B⊆A,
a-4≤2
a+4≥3
,∴
a≤6
a≥-1
,即-1≤a≤6.
即实数a的取值范围是[-1,6].
故答案为:[-1,6].
点评:本题主要考查充分条件和必要条件的应用,注意区间端点值等号的取舍问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知命题p:A={x|(x+2)(x-10)≤0}.命题q:B={x|1-m≤x≤1+m(m>0)}
(1)求不等式(x+2)(x-10)≤0的解集
(2)若¬p是¬q的必要不充分条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:A={x|
ax-4
x-2
>0}
,命题q:B={x|m<x<2m+1}.
(1)若a≥2,求关于x的不等式
ax-4
x-2
>0
的解集A;
(2)若a=-2且¬p是¬q的充分而不必要条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:A={x|10+3x-x2≥0},命题q:B={x|x2-2x+1-m2≤0(m>0)}若非p是非q的充分不必要条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知命题p:A={x|(x+2)(x-10)≤0}.命题q:B={x|1-m≤x≤1+m(m>0)}
(1)求不等式(x+2)(x-10)≤0的解集
(2)若¬p是¬q的必要不充分条件,求实数m的取值范围.

查看答案和解析>>

同步练习册答案