精英家教网 > 高中数学 > 题目详情
若函数f(x)=是定义在(-1,1)上的单调递增的奇函数,且
(I)求函数f(x)的解析式;
(Ⅱ)求满足f(t-1)+f(t)<0的t的范围.
【答案】分析:(I)依题意f(0)=0,可求得b,再由f()=可求得a,从而可得函数f(x)的解析式;
(Ⅱ)由(I)可求得函数f(x)的解析式,利用奇函数f(x)在(-1,1)上的单调递增即可求得f(t-1)+f(t)<0的t的范围.
解答:解:(I)∵f(x)是定义在(-1,1)上的奇函数,
∴f(0)=0,解得b=0,…1分
则f(x)=
∴f()==
∴a=1…4分
∴函数的解析式为:f(x)=(-1<x<1)…6分
(Ⅱ)∵f(t-1)+f(t)<0,
∴f(t-1)<-f(t),
∵f(-t)=-f(t),
∴f(t-1)<f(-t),…8分
又∵f(x)在(-1,1)上是增函数,
∴-1<t-1<-t<1,
∴0<t<…12分
点评:本题考查函数解析式的求解,考查函数的奇偶性与单调性的应用,考查分析与运算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列说法正确的有(  )个.
①已知函数f(x)在(a,b)内可导,若f(x)在(a,b)内单调递增,则对任意的?x∈(a,b),有f′(x)>0.
②函数f(x)图象在点P处的切线存在,则函数f(x)在点P处的导数存在;反之若函数f(x)在点P处的导数存在,则函数f(x)图象在点P处的切线存在.
③因为3>2,所以3+i>2+i,其中i为虚数单位.
④定积分定义可以分为:分割、近似代替、求和、取极限四步,对求和In=
n
i=1
f(ξi)△x
中ξi的选取是任意的,且In仅于n有关.
⑤已知2i-3是方程2x2+px+q=0的一个根,则实数p,q的值分别是12,26.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年山东省临沂市郯城一中高二(下)4月月考数学试卷(理科)(解析版) 题型:选择题

下列说法正确的有( )个.
①已知函数f(x)在(a,b)内可导,若f(x)在(a,b)内单调递增,则对任意的?x∈(a,b),有f′(x)>0.
②函数f(x)图象在点P处的切线存在,则函数f(x)在点P处的导数存在;反之若函数f(x)在点P处的导数存在,则函数f(x)图象在点P处的切线存在.
③因为3>2,所以3+i>2+i,其中i为虚数单位.
④定积分定义可以分为:分割、近似代替、求和、取极限四步,对求和中ξi的选取是任意的,且In仅于n有关.
⑤已知2i-3是方程2x2+px+q=0的一个根,则实数p,q的值分别是12,26.
A.0
B.1
C.3
D.4

查看答案和解析>>

科目:高中数学 来源:2011-2012学年广东省东莞一中高二(上)期中数学试卷(理科)(解析版) 题型:解答题

已知函数f(x)=log3是f(x)图象上的两点,横坐标为的点P满足2(O为坐标原点).
(Ⅰ)求证:y1+y2为定值;
(Ⅱ)若,其中n∈N*,且n≥2,求Sn
(Ⅲ)已知an=,其中n∈N*,Tn为数列{an}的前n项和,若Tn<m(Sn+1+1)对一切n∈N*都成立,试求m的取值范围.

查看答案和解析>>

科目:高中数学 来源:2009-2010学年江西省九江一中高二(上)期中数学试卷(解析版) 题型:解答题

已知函数f(x)=log3是f(x)图象上的两点,横坐标为的点P满足2(O为坐标原点).
(Ⅰ)求证:y1+y2为定值;
(Ⅱ)若,其中n∈N*,且n≥2,求Sn
(Ⅲ)已知an=,其中n∈N*,Tn为数列{an}的前n项和,若Tn<m(Sn+1+1)对一切n∈N*都成立,试求m的取值范围.

查看答案和解析>>

科目:高中数学 来源:2007年北京市东城区高考数学二模试卷(理科)(解析版) 题型:解答题

已知函数f(x)=log3是f(x)图象上的两点,横坐标为的点P满足2(O为坐标原点).
(Ⅰ)求证:y1+y2为定值;
(Ⅱ)若,其中n∈N*,且n≥2,求Sn
(Ⅲ)已知an=,其中n∈N*,Tn为数列{an}的前n项和,若Tn<m(Sn+1+1)对一切n∈N*都成立,试求m的取值范围.

查看答案和解析>>

同步练习册答案