精英家教网 > 高中数学 > 题目详情

设四边形ABCD内接于圆,那么下列各式能成立的是


  1. A.
    sin(A+B)=sin(C+D)
  2. B.
    cos(A+B)=cos(C+D)
  3. C.
    cosB=cosD
  4. D.
    tg(A+B+C)=tgD
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网附加题:
A.如图,四边形ABCD内接于圆O,弧AB=弧AD,过A点的切线交CB的延长线于E点.
求证:AB2=BE•CD.
B.设数列{an},{bn}满足an+1=3an+2bn,bn+1=2bn,且满足
an+4
bn+4
=M
an
bn
,试求二阶矩阵M.
C.已知椭圆C的极坐标方程为ρ2=
12
3cos2θ+4sin2θ
,点F1,F2为其左、右焦点,直线l的参数方程为
x=2+
2
2
t
y=
2
2
t
(t为参数,t∈R).求点F1,F2到直线l的距离之和.
D.已知x,y,z均为正数.求证:
x
yz
+
y
zx
+
z
xy
1
x
+
1
y
+
1
z

查看答案和解析>>

科目:高中数学 来源: 题型:

A.已知方程|2x-1|-|2x+1|=a+1有实数解,则a的取值范围为
[-3,-1)
[-3,-1)

B.如图,四边形ABCD内接于⊙O,BC是直径,MN切⊙O于A,∠MAB=25,则∠D=
115°
115°

C.设曲线C的参数方程为
x=2+3cosθ
y=-1+3sinθ
(θ为参数),直线l的参数方程为
x=1+2t
y=1+t
(t为参数),则直线l被曲线C截得的弦长为
4
4

查看答案和解析>>

科目:高中数学 来源:2010年江苏省泰州高级中学高考数学模拟试卷(解析版) 题型:解答题

附加题:
A.如图,四边形ABCD内接于圆O,弧AB=弧AD,过A点的切线交CB的延长线于E点.
求证:AB2=BE•CD.
B.设数列{an},{bn}满足an+1=3an+2bn,bn+1=2bn,且满足=M,试求二阶矩阵M.
C.已知椭圆C的极坐标方程为,点F1,F2为其左、右焦点,直线l的参数方程为(t为参数,t∈R).求点F1,F2到直线l的距离之和.
D.已知x,y,z均为正数.求证:

查看答案和解析>>

科目:高中数学 来源:2012年陕西省西安市西工大附中高考数学十一模试卷(文科)(解析版) 题型:解答题

A.已知方程|2x-1|-|2x+1|=a+1有实数解,则a的取值范围为   
B.如图,四边形ABCD内接于⊙O,BC是直径,MN切⊙O于A,∠MAB=25,则∠D=   
C.设曲线C的参数方程为(θ为参数),直线l的参数方程为(t为参数),则直线l被曲线C截得的弦长为   

查看答案和解析>>

同步练习册答案