精英家教网 > 高中数学 > 题目详情

【题目】对于定义域为的函数,如果存在区间),同时满足:

内是单调函数;②当定义域是时, 的值域也是

则称函数是区间上的“保值函数”.

(1)求证:函数不是定义域上的“保值函数”;

(2)已知)是区间上的“保值函数”,求的取值范围.

【答案】(1)不是(2)

【解析】试题分析:(1)不满足第2个条件,所以不是“保值函数”(2)函数f(x)要满足在内是单调增函数,且f(x)=x有两个不同解。可解得参数范围。

试题解析:(1)函数时的值域为

不满足“保值函数”的定义,因此函数不是定义域上的“保值函数”.

(2)因内是单调增函数,故

这说明是方程的两个不相等的实根,

其等价于方程有两个不相等的实根,

解得

的取值范围为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数f(x)=(x3﹣1)2+1,下列结论中正确的是(
A.x=1是函数f(x)的极小值点,x=0是函数f(x)的极大值点
B.x=1及x=0均是函数f(x)的极大值点
C.x=1是函数f(x)的极大值点,x=0是函数f(x)的极小值点
D.x=1是函数f(x)的极小值点,函数f(x)无极大值点

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数fn(x)=xn+bx+c(n∈N* , b,c∈R)
(Ⅰ)设n≥2,b=1,c=﹣1,证明:fn(x)在区间( )内存在唯一的零点;
(Ⅱ)设n=2,若对任意x1 , x2∈[﹣1,1],均有|f2(x1)﹣f2(x2)丨≤4,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题p:方程 =1所表示的图形是焦点在y轴上的双曲线,命题q:复数z=(m﹣3)+(m﹣1)i对应的点在第二象限,又p或q为真,p且q为假,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列结论中正确的序号是
①函数y=ax(a>0且a≠1)与函数 (a>0且a≠1)的定义域相同;
②函数y=k3x(k>0)(k为常数)的图象可由函数y=3x的图象经过平移得到;
③函数 (x≠0)是奇函数且函数 (x≠0)是偶函数;
④若x1是函数f(x)的零点,且m<x1<n,则f(m)f(n)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】春节期间,“厉行节约,反对浪费”之风悄然吹开,某市通过随机询问100名性别不同的居民是否能做到“光盘”行动,得到如下的列联表:

做不到“光盘”

能做到“光盘”

45

10

30

15

P(K2≥k)

0.10

0.05

0.025

k

2.706

3.841

5.024

附:
参照附表,得到的正确结论是(
A.在犯错误的概率不超过l%的前提下,认为“该市居民能否做到‘光盘’与性别有关”
B.在犯错误的概率不超过l%的前提下,认为“该市居民能否做到‘光盘’与性别无关”
C.有90%以上的把握认为“该市居民能否做到‘光盘’与性别有关”
D.有90%以上的把握认为“该市居民能否做到‘光盘’与性别无关”

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=kx2+2kx+1在[﹣3,2]上的最大值为5,则k的值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,焦点在x轴上的椭圆C 经过点(b2e),其中e为椭圆C的离心率.过点T(10)作斜率为k(k0)的直线l交椭圆CAB两点(Ax轴下方).

(1)求椭圆C的标准方程;

(2)过点O且平行于l的直线交椭圆C于点MN,求 的值;

(3)记直线ly轴的交点为P.若,求直线l的斜率k

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知复数z=k﹣2i(k∈R)的共轭复数 ,且z﹣( ﹣i)= ﹣2i.
(1)求k的值;
(2)若过点(0,﹣2)的直线l的斜率为k,求直线l与曲线y= 以及y轴所围成的图形的面积.

查看答案和解析>>

同步练习册答案