【题目】如图,四棱锥P﹣ABCD的底面是梯形.BC∥AD,AB=BC=CD=1,AD=2,,
(Ⅰ)证明;AC⊥BP;
(Ⅱ)求直线AD与平面APC所成角的正弦值.
【答案】(Ⅰ)见解析(Ⅱ).
【解析】
(I)取的中点,连接,通过证明平面得出;
(II)以为原点建立坐标系,求出平面的法向量,通过计算与的夹角得出与平面所成角.
(I)证明:取AC的中点M,连接PM,BM,
∵AB=BC,PA=PC,
∴AC⊥BM,AC⊥PM,又BM∩PM=M,
∴AC⊥平面PBM,
∵BP平面PBM,
∴AC⊥BP.
(II)解:∵底面ABCD是梯形.BC∥AD,AB=BC=CD=1,AD=2,
∴∠ABC=120°,
∵AB=BC=1,∴AC,BM,∴AC⊥CD,
又AC⊥BM,∴BM∥CD.
∵PA=PC,CM,∴PM,
∵PB,∴cos∠BMP,∴∠PMB=120°,
以M为原点,以MB,MC的方向为x轴,y轴的正方向,
以平面ABCD在M处的垂线为z轴建立坐标系
则A(0,,0),C(0,,0),P(,0,),D(﹣1,,0),
∴(﹣1,,0),(0,,0),(,,),
设平面ACP的法向量为(x,y,z),则,即,
令x得(,0,1),
∴cos,,
∴直线AD与平面APC所成角的正弦值为|cos,|.
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,短轴长为.
(1)求椭圆的标准方程;
(2)若椭圆的左焦点为,过点的直线与椭圆交于两点,则在轴上是否存在一个定点使得直线的斜率互为相反数?若存在,求出定点的坐标;若不存在,也请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图①,△ABC是以AC为斜边的等腰直角三角形,△BCD是等边三角形.如图②,将△BCD沿BC折起,使平面BCD⊥平面ABC,记BC的中点为E,BD的中点为M,点F、N在棱AC上,且AF=3CF,C.
(1)试过直线MN作一平面,使它与平面DEF平行,并加以证明;
(2)记(1)中所作的平面为α,求平面α与平面BMN所成锐二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,给出下列结论:
(1)若对任意,且,都有,则为R上的减函数;
(2)若为R上的偶函数,且在内是减函数, (-2)=0,则>0解集为(-2,2);
(3)若为R上的奇函数,则也是R上的奇函数;
(4)t为常数,若对任意的,都有则关于对称。
其中所有正确的结论序号为_________
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的右焦点F与抛物线焦点重合,且椭圆的离心率为,过轴正半轴一点 且斜率为的直线交椭圆于两点.
(1)求椭圆的标准方程;
(2)是否存在实数使以线段为直径的圆经过点,若存在,求出实数的值;若不存在说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com