精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ln(x+
3
2
)+
2
x
,g(x)=lnx.
(1)求函数f(x)的单调区间;
(2)如果关于x的方程g(x)=
1
2
x+m
有实数根,求实数m的取值范围;
(3)是否存在正数k,使得关于x的方程f(x)=kg(x)有两个不相等的实根?如果存在,求的k取值范围,如果不存在,说明理由?
分析:(1)依题意,可求得f′(x)=
2
2x+3
-
2
x2
,令f′(x)=0可解得:x=-1或3,列出x,f(x),f′(x)随x变化情况表,即可得到函数f(x)的单调区间;
(2)可求得m=lnx-
1
2
x,(x>0),构造函数t(x)=lnx-
1
2
x,(x>0),通过t′(x)可求得t(x)max,从而可求得m的范围;
(3)由h(x)=f(x)-kg(x)=ln(x+
3
2
)+
2
x
-klnx,(x>0),可求得h′(x)=
2(1-k)x2-(3k+4)x-6
x2(2x+3)
,取p(x)=2(1-k)x2-(3k+4)x-6,(x≥0),通过对k的取值情况的讨论,可判断h(x)=0的根的情况,从而可得答案.
解答:解:(1)f(x)=ln(x+
3
2
)+
2
x
(x>-
3
2
,且x≠0),
f′(x)=
1
x+
3
2
-
2
x2
=
2
2x+3
-
2
x2
,令f′(x)=0,解得:x=-1或3.
x,f(x),f′(x)随x变化情况如下表:
x -1 (-1,0) (0,3) 3 (3,+∞)
f′(x) + 0 - - 0 +
f(x)
∴f(x)的单调递增区间是(-
3
2
,-1)和(3,+∞),单调递减区间是(-1,0)和(0,3).…(4分)
(2)g(x)=lnx=
1
2
x+m,
∴m=lnx-
1
2
x,(x>0)
取t(x)=lnx-
1
2
x,(x>0),
则t′(x)=
1
x
-
1
2
,(x>0),令t′(x)=0得,x=2;
∴x,t(x),t′(x)随x变化情况如下表:
x (0,2) 2 (2,+∞)
t′(x) + 0 -
t(x)
∴当x=2时,t(x)取得极大值t(2)=ln2-1,也是最大值,
∴m<ln2-1.…(8分)
(3)h(x)=f(x)-kg(x)=ln(x+
3
2
)+
2
x
-klnx,(x>0),
∴h′(x)=
1
x+
3
2
-
2
x2
-
k
x
=
2
2x+3
-
2
x2
-
k
x
=
2x2-2(2x+3)-kx(2x+3)
x2(2x+3)
=
2(1-k)x2-(3k+4)x-6
x2(2x+3)

取p(x)=2(1-k)x2-(3k+4)x-6,(x≥0)…(10分)
对称轴x=-
-(3k+4)
4(1-k)
=-
3k+4
4(k-1)

当k>1时,p(x)图象开口向下,-
3k+4
4(k-1)
<0,
∴p(x)在(0,+∞)上单调递减,p(x)<p(0)=-6<0
∴h′(x)<0,
∴h(x)在(0,+∞)上单调递减,h(x)=0不可能有两个不等实根.
当k=1时,p(x)=-7x-6<0,
同理h′(x)<0,
∴h(x)在(0,+∞)上单调递减,h(x)=0不可能有两个不等实根.
当0<k<1时,p(x)图象开口向上,
又p(0)=-6<0,此时p(x)=0在(0,+∞)有且仅有一根,设为x0
对x∈(0,x0),p(x)<0,h'(x)<0,h(x)在(0,x0)上单调递减;
对x∈(x0,+∞),p(x)>0,h'(x)>0,h(x)在(x0,+∞)上单调递增;h(x)min=h(x0)=ln(x0+
3
2
)+
2
x0
-klnx0
又p(1)=2(1-k)•12-(3k+4)•1-6=-8-5k<0,
∴x0>1,lnx0>0,
∴ln(x0+
3
2
)>lnx0>klnx0(0<k<1),
2
x0
>0,
∴h(x0)>0,
此时h(x)=0没有实数根.
综上所述,不存在正数k,使得关于x的方程f(x)=kg(x)有两个不相等的实根…(15分)
点评:本题考查利用导数研究函数的单调性,考查函数的零点与方程根的关系,突出分类讨论思想与方程思想的综合应用,考查抽象思维与逻辑思维能力,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
1
3
x3-
3
2
ax2-(a-3)x+b

(1)若函数f(x)在P(0,f(0))的切线方程为y=5x+1,求实数a,b的值:
(2)当a<3时,令g(x)=
f′(x)
x
,求y=g(x)在[l,2]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
2
x2-alnx
的图象在点P(2,f(2))处的切线方程为l:y=x+b
(1)求出函数y=f(x)的表达式和切线l的方程;
(2)当x∈[
1
e
,e]
时(其中e=2.71828…),不等式f(x)<k恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx,g(x)=
12
x2+a
(a为常数),直线l与函数f(x)、g(x)的图象都相切,且l与函数f(x)的图象的切点的横坐标为1.
(1)求直线l的方程及a的值;
(2)当k>0时,试讨论方程f(1+x2)-g(x)=k的解的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
13
x3+x2+ax

(1)讨论f(x)的单调性;
(2)设f(x)有两个极值点x1,x2,若过两点(x1,f(x1)),(x2,f(x2))的直线l与x轴的交点在曲线y=f(x)上,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3-
32
ax2+b
,a,b为实数,x∈R,a∈R.
(1)当1<a<2时,若f(x)在区间[-1,1]上的最小值、最大值分别为-2、1,求a、b的值;
(2)在(1)的条件下,求经过点P(2,1)且与曲线f(x)相切的直线l的方程;
(3)试讨论函数F(x)=(f′(x)-2x2+4ax+a+1)•ex的极值点的个数.

查看答案和解析>>

同步练习册答案