精英家教网 > 高中数学 > 题目详情

【题目】椭圆mx2+ny2=1与直线x+y﹣1=0相交于A,B两点,过AB中点M与坐标原点的直线的斜率为 ,则 的值为(
A.
B.
C.1
D.2

【答案】A
【解析】解:设A(x1 , y1),B(x2 , y2),M(x0 , y0),
①,
kAB= ②,
由AB的中点为M可得x1+x2=2x0 , y1+y2=2y0
由A,B在椭圆上,可得
两式相减可得m(x1﹣x2)(x1+x2)+n(y1﹣y2)(y1+y2)=0③,
把①②代入③可得m(x1﹣x2)2x0﹣n(x1﹣x2)2y0=0③,
整理可得
故选A
(法二)设A(x1 , y1),B(x2 , y2),M(x0 , y0
联立方程 可得(m+n)x2﹣2nx++n﹣1=0
∴x1+x2= ,y1+y2=2﹣(x1+x2)=
由中点坐标公式可得, = =
∵M与坐标原点的直线的斜率为
=
故选A

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在数列{an}中,若a1=1,anan+1=( n2 , 则满足不等式 + + +…+ + <2016的正整数n的最大值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【2017湖南娄底二模】某种产品的质量以其质量指标值衡量,并依据质量指标值划分等级如下表:

质量指标值

等级

三等品

二等品

一等品

从某企业生产的这种产品中抽取200件,检测后得到如下的频率分布直方图:

(Ⅰ)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“一、二等品至少要占全部产品92%”的规定?

(Ⅱ)在样本中,按产品等级用分层抽样的方法抽取8件,再从这8件产品中随机抽取4件,求抽取的4件产品中,一、二、三等品都有的概率;

(Ⅲ)该企业为提高产品质量,开展了“质量提升月”活动,活动后在抽样检测,产品质量指标值近似满足,则“质量提升月”活动后的质量指标值的均值比活动前大约提升了多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【2017山西三区八校二模】已知函数(其中 为常数且)在处取得极值.

(Ⅰ)当时,求的单调区间;

(Ⅱ)若上的最大值为1,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C的对边分别为a,b,c,已知bcos2 +acos2 = c.
(Ⅰ)求证:a,c,b成等差数列;
(Ⅱ)若C= ,△ABC的面积为2 ,求c.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为备战年瑞典乒乓球世界锦标赛,乒乓球队举行公开选拨赛,甲、乙、丙三名选手入围最终单打比赛名单.现甲、乙、丙三人进行队内单打对抗比赛,每两人比赛一场,共赛三场每场比赛胜者得分,负者得分,在每一场比赛中,甲胜乙的概率为丙胜甲的概率为,乙胜丙的概率为,且各场比赛结果互不影响.若甲获第一名且乙获第三名的概率为.

(Ⅰ)求的值

(Ⅱ)设在该次对抗比赛中,丙得分为,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列命题:
①已知集合A={1,a},B={1,2,3},则“a=3”是“AB”的充分不必要条件;
②“x<0”是“ln(x+1)<0”的必要不充分条件;
③“函数f(x)=cos2ax﹣sin2ax的最小正周期为π”是“a=1”的充要条件;
④“平面向量 的夹角是钝角”的充要条件的“ <0”.
其中正确命题的序号是(把所有正确命题的序号都写上)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分14分)

如图,2015年春节,摄影爱好者在某公园处,发现正前方处有一立柱,测得立柱顶端的仰角和立柱底部的俯角均为,已知的身高约为米(将眼睛距地面的距离按米处理)

(1)求摄影者到立柱的水平距离和立柱的高度;

(2)立柱的顶端有一长2米的彩杆绕中点与立柱所在的平面内旋转摄影者有一视角范围为的镜头,在彩杆转动的任意时刻,摄影者是否都可以将彩杆全部摄入画面?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数y=asinx﹣bcosx的一条对称轴为x= ,则直线l:ax﹣by+c=0的倾斜角为( )
A.45°
B.60°
C.120°
D.135°

查看答案和解析>>

同步练习册答案