精英家教网 > 高中数学 > 题目详情

【题目】甲、乙两艘轮船都要在某个泊位停靠6小时,假定它们在一昼夜的时间段中随机到达,则这两艘船中至少有一艘在停靠泊位时必须等待的概率是

【答案】
【解析】解:设甲到达的时刻为x,乙到达的时刻为y则所有的基本事件构成的区域
Ω满足0≤x≤24且0≤y≤24,
这两艘船中至少有一艘在停靠泊位时必须等待包含的基本事件构成的区域
A满足0≤x≤24且0≤y≤24且|x﹣y|≤6,作出对应的平面区域如图:
这两艘船中至少有一艘在停靠泊位时必须等待的概率P(A)=
故答案为:

设出甲、乙到达的时刻,列出所有基本事件的约束条件同时列出这两艘船中至少有一艘在停靠泊位时必须等待约束条件,利用线性规划作出平面区域,利用几何概型概率公式求出概率

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数f(x)=a2x+ (a,b,c为常数,且a>0,c>0).
(1)当a=1,b=0时,求证:|f(x)|≥2c;
(2)当b=1时,如果对任意的x>1都有f(x)>a恒成立,求证:a+2c>1.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某生态园将一三角形地块ABC的一角APQ开辟为水果园,种植桃树,已知角A为120°.现在边界AP,AQ处建围墙,PQ处围栅栏.

(1)若∠APQ=15°,AP与AQ两处围墙长度和为100( +1)米,求栅栏PQ的长;
(2)已知AB,AC的长度均大于200米,若水果园APQ面积为2500 平方米,问AP,AQ长各为多少时,可使三角形APQ周长最小?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}是有穷数列,且a1∈R,公差d=2,记{an}的所有项之和为S,若a12+S≤96,则数列{an}至多有项.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知直四棱柱ABCD﹣A1B1C1D1的底面ABCD为菱形,且∠BCD=60°,P为AD1的中点,Q为BC的中点

(1)求证:PQ∥平面D1DCC1
(2)求证:DQ⊥平面B1BCC1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】记等比数列{an}前n项和为Sn , 已知a1+a3=30,3S1 , 2S2 , S3成等差数列.
(1)求数列{an}的通项公式;
(2)若数列{bn}满足b1=3,bn+1﹣3bn=3an , 求数列{bn}的前n项和Bn
(3)删除数列{an}中的第3项,第6项,第9项,…,第3n项,余下的项按原来的顺序组成一个新数列,记为{cn},{cn}的前n项和为Tn , 若对任意n∈N* , 都有 >a,试求实数a的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线C的顶点在原点,焦点在x轴上,且抛物线上有一点P(4,m)到焦点的距离为6.
(Ⅰ)求抛物线C的方程;
(Ⅱ)若抛物线C与直线y=kx﹣2相交于不同的两点A、B,且AB中点横坐标为2,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数据x1 , x2 , x3 , …,x100是杭州市100个普通职工的2016年10月份的收入(均不超过2万元),设这100个数据的中位数为x,平均数为y,方差为z,如果再加上马云2016年10月份的收入x101(约100亿元),则相对于x、y、z,这101个月收入数据(
A.平均数可能不变,中位数可能不变,方差可能不变
B.平均数大大增大,中位数可能不变,方差也不变
C.平均数大大增大,中位数一定变大,方差可能不变
D.平均数大大增大,中位数可能不变,方差变大

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分16分)已知数列)满足其中

1)当时,求关于的表达式,并求的取值范围;

2)设集合

,求证:

是否存在实数,使都属于?若存在,请求出实数;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案