精英家教网 > 高中数学 > 题目详情

【题目】已知函数,其中

1在区间上具有时间的单调性,求实数的取值范围;

2,且函数的最小值为,求的最小值.

【答案】12.

【解析】

试题分析:1因为,上恒成立,即上单调递减,所以,且单调递增,比较与端点的大小关系,时,,不合题意时,上单调递减,在上单调递增,又上单调递减,所以解得2,令,通过参变分离构造新函数,可判断出在时,,所以的单调性与的正负有关,因此单减,单增,所以,通过求导可求得最小值.

试题解析:解:1

上恒成立,即上单调递减,

时,,即上单调递增,不合题意

时,由,得,由,得

的单调减区间为,单调增区间为

在区间上具有相同的单调性,

,解得

综上,的取值范围是

2

得到,设

时,;当时,

从而上递减,在上递增,

时,,即

上,递减;

上,递增,

上递减,

的最小值为0.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数).

(1)若的部分图像如图所示的解析式

(2)在(1)的条件下,求最小正实数使得函数的图象向左平移个单位后所对应的函数是偶函数

(3)若上是单调递增函数的最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某棋类游戏的规则如下:棋子的初始位置在起点处,玩家每掷出一枚骰子,朝上一面的点数即为向终点方向前进的格子数,(比如玩家一开始掷出的骰子点数为3,则走到炸弹所在位置),若踩到炸弹则返回起点重新开始,若达到终点则游戏结束.现在已知小明掷完三次骰子后游戏恰好结束,则所有不同的情况种数__________.

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于无穷数列和函数,若,则称是数列的母函数.

(Ⅰ)定义在上的函数满足:对任意,都有,且;又数列满足.

(1)求证: 是数列的母函数;

(2)求数列的前项.

(Ⅱ)已知是数列的母函数,且.若数列的前项和为,求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 其中

(1)若是函数的极值点,求实数的值及的单调区间;

(2)若对任意的 使得恒成立,且,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,函数

1求证:曲线在点处的切线过定点;

2在区间上的极大值,但不是最大值,求实数的取值范围;

3求证:对任意给定的正数 ,总存在,使得上为单调函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高校大一新生中的6名同学打算参加学校组织的“雅荷文学社”、“青春风街舞社”、“羽乒协会”、“演讲团”、“吉他协会”五个社团,若每名同学必须参加且只能参加1个社团且每个社团至多两人参加,则这6个人中至多有1人参加“演讲团”的不同参加方法数为( )

A. 4680 B. 4770 C. 5040 D. 5200

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂2万元设计了某款式的服装,根据经验,每生产1百套该款式服装的成本为1万元,每生产(百套)的销售额(单位:万元).

(1)若生产6百套此款服装,求该厂获得的利润;

(2)该厂至少生产多少套此款式服装才可以不亏本?

(3)试确定该厂生产多少套此款式服装可使利润最大,并求最大利润.(注:利润=销售额-成本,其中成本=设计费+生产成本)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求函数的单调区间;

(2)若在区间上的最大值为,求的值;

(3)若,有不等式恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案