精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标系xOy中,直线l的参数方程为t为参数,aR),以O为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρsin2θ2cosθ

1)求直线l的普通方程及曲线C的直角坐标方程;

2)若直线l过点P11)且与曲线C交于AB两点,求|PA|+|PB|

【答案】(1)lx+ya0Cy22x;(2)

【解析】

(1) 消去参数t可得直线l的普通方程,利用极坐标与直角坐标的公式化简求解可得曲线C的直角坐标方程

(2)设直线l的参数方程为,再代入抛物线的方程,利用直线参数方程的几何意义求解即可.

1)由消去参数t可得直线l的普通方程为:x+ya0,

ρsin2θ2cosθρ2sin2θ2ρcosθ可得曲线C的直角坐标方程为:y22x

2)将P1,1)代入x+ya0可得a2,

所以直线l的参数方程为t为参数)

将其代入曲线C的普通方程得:t2+420,设A,B对应的参数为t1,t2,

t1+t2=﹣4,t1t2=﹣20,∴|PA|+|PB||t1|+|t2||t1t2|

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知中,内角的对边为三角形外接圆的半径,证明:

1

2.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某房产销售公司从登记购房的客户中随机选取了50名客户进行调查,按他们购一套房的价格(万元)分成6组:得到频率分布直方图如图所示.用频率估计概率.

房产销售公司每卖出一套房,房地产商给销售公司的佣金如下表(单位:万元):

房价区间

佣金收入

1

2

3

4

5

6

1)求的值;

2)求房产销售公司卖出一套房的平均佣金;

3)若该销售公司平均每天销售4套房,请估计公司月(按30天计)利润(利润=总佣金-销售成本).

该房产销售公司每月(按30天计)的销售成本占总佣金的百分比按下表分段累计/span>计算:

月总佣金

不超过100万元的部分

超过100万元至200万元的部分

超过200万元至300万元的部分

超过300万元的部分

销售成本占

佣金比例

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a≤8.函数fx)=a1nxx2+5gx)=2x+

1)若fx)的极大值为5,求a的值

2)若关于x的不等式fxgx)在区间[1+∞)上恒成立,求a的取值范围,(1n2≈0.7

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数fx)=|2x3|+|x+2|

1)求不等式fx≤5的解集;

2)若关于x的不等式fxa|x|在区间[12]上恒成立,求实数a的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为),数列满足:,且).

(Ⅰ)求数列的通项公式;

(Ⅱ)求证:数列为等比数列;

(Ⅲ)求数列的前项和的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是半径为2的球面上的点,,点上的射影为,则三棱锥体积的最大值是( .

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一件刚出土的珍贵文物要在博物馆大厅中央展出,需要设计各面是玻璃平面的无底正四棱柱将其罩住,罩内充满保护文物的无色气体.已知文物近似于塔形,高1.8米,体积0.5立方米,其底部是直径为0.9米的圆形,要求文物底部与玻璃罩底边至少间隔0.3米,文物顶部与玻璃罩上底面至少间隔0.2米,气体每立方米1000元,则气体费用最少为( )元

A.4500B.4000C.2880D.2380

查看答案和解析>>

同步练习册答案