精英家教网 > 高中数学 > 题目详情
定义域为R,且对任意实数x1,x2都满足不等式f()≤的所有函数f(x)组成的集合记为M,例如,函数f(x)=kx+b∈M.
(1)已知函数f(x)=,证明:f(x)∈M;
(2)写出一个函数f(x),使得f(x)∉M,并说明理由;
(3)写出一个函数f(x)∈M,使得数列极限=1,=1.
【答案】分析:(1)分类讨论,验证f()≤成立,即可得到结论;
(2)利用条件,构造函数f(x)=-x2,f(x)∉M,再取值验证即可;
(3)利用条件,构造函数f(x)=满足f(x)∈M,验证条件即可.
解答:解:(1)证明:由题意,当x1≤x2≤0或0≤x1≤x2时,f()≤成立
设x1≤0≤x2,且<0,
-f()==
∴f()≤成立
设x1≤0≤x2,且≥0,
-f()==
∴f()≤成立
∴综上所述,f(x)∈M;
(2)如函数f(x)=-x2,f(x)∉M
取x1=-1,x2=1,则=-1,f()=0
此时f()≤不成立;
(3)f(x)=满足f(x)∈M,且==1,==1.
点评:本题考查新定义,考查分类讨论的数学思想,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数f(x)定义域为R,且对任意x、y∈R,f(x+y)=f(x)+f(y)恒成立.则下列选项中不恒成立的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知y=f(x)的定义域为R,且对任意的实数x,恒有等式2f(x)+f(-x)-3•2sinx=0成立.
(1)试求f(x)的解析式;
(2)判断f(x)在[-
π
2
π
2
]
的单调性,并用单调性定义予以证明;
(3)若f(x)=
3
2
2
,求满足条件的所有实数x的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)的定义域为R,且对任意a,b∈R,都有f(a+b)=f(a)+f(b),求证:函数y=f(x)是奇函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•长宁区一模)已知函数 f(x)的定义域为R,且对任意 x∈Z,都有 f(x)=f(x-1)+f(x+1).若f(-1)=6,f(1)=7,则 f(2012)+f(-2012)=
-13
-13

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)的定义域为R,且对任意a,b∈R,都有f(a+b)=f(a)+f(b),且当x>0时,f(x)<0恒成立.
(1)证明函数y=f(x)是R上的单调性;
(2)讨论函数y=f(x)的奇偶性;
(3)若f(x2-2)+f(x)<0,求x的取值范围.

查看答案和解析>>

同步练习册答案