精英家教网 > 高中数学 > 题目详情

的值域.

解析试题分析:可利用同角三角函数的基本关系式将函数化为利用换元法令原函数变为一元二次函数,可用一元二次函数求值域的方法解,注意的取值范围.
解:原函数可化为

可得

考点:同角三角函数的基本关系式,一元二次函数求值域.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设函数的最小正周期为
(1)求的值;
(2)若函数的图像是由的图像向右平移个单位长度得到,求的单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知sin α<0,tan α>0.
(1)求α角的集合;
(2)求终边所在的象限;
(3)试判断tansincos的符号.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数),其图象的两个相邻对称中心的距离为.
(1)求函数的解析式;
(2)若△的内角为所对的边分别为(其中),且
 ,面积为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

化简:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数+的部分图象如图所示.
(1)将函数的图象保持纵坐标不变,横坐标向右平移个单位后得到函数的图像,求函数上的值域;
(2)求使的取值范围的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知sin θ、cos θ是关于x的方程x2-ax+a=0(a∈R)的两个根.
(1)求cos+sin的值;
(2)求tan(π-θ)-的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的部分图象如图所示.

(1)求的表达式;
(2)设,求函数的最小值及相应的的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知向量a=(cosωx,sinωx),b=(cosωx,cosωx),其中0<ω<2,函数,其图象的一条对称轴为
(1)求函数的表达式及单调递增区间;
(2)在△ABC中,a,b,c分别是角A,B,C的对边,S△ABC为其面积,若,b=1,,求a的值。

查看答案和解析>>

同步练习册答案