精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系xOy中,A(﹣20),B20),P为不在x轴上的动点,直线PAPB的斜率满足kPAkPB

1)求动点P的轨迹Γ的方程;

2)若MN是轨迹Γ上两点,kMN1,求OMN面积的最大值.

【答案】1y≠0);(2

【解析】

1)设Pxy)为轨迹Γ上任意一点,根据kPAkPB,得到,化简即得解;

2)设MNyx+b,联立得到韦达定理,利用弦长公式表示弦长|MN|O到直线MN的距离,继而表示OMN的面积,利用导数研究单调性,求最值即可.

1)设Pxy)为轨迹Γ上任意一点,则根据kPAkPB

整理得动点P的轨迹Γ的方程为:y≠0);

2)设MNyx+b,联立

整理得5x2+8bx+4b240

5b20

Mx1y1),Nx2y2),

x1+x2bx1x2b21),

|MN||x1x2|

O到直线MN的距离d

所以OMN面积S

fb)=5b2b4

fb)=10b4b30

解得b0b±

又因为5b20

b0b±

S0)=0S±

OMN的面积S最大值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

1)若曲线在点处的切线与直线平行,求的值,并求函数的单调区间;

2)当时,若对任意,都有恒成立,试求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂生产某款机器零件,因为要求精度比较高,所以需要对生产的一大批零件进行质量检测.首先由专家根据各种系数制定了质量指标值,从生产的大批零件中选取100件作为样本进行评估,根据评估结果作出如图所示的频率分布直方图.

1)(ⅰ)根据直方图求及这100个零件的样本平均数(同一组数据用该组数据区间的中点值表示);

(ⅱ)以样本估计总体,经过专家研究,零件的质量指标值,试估计10000件零件质量指标值在内的件数;

2)设每个零件利润为元,质量指标值为,利润与质量指标值之间满足函数关系.假设同组中的每个数据用该组区间的中点值代替,试估算该批零件的平均利润.(结果四舍五入,保留整数)

参考数据:,则

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】等差数列中,,且成等比数列.

1)求数列的通项公式;

2)记为数列的前项和,是否存在正整数,使得?若存在,求出的最小值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥S—ABCD中,底面ABCD,底面ABCD是矩形,且ESA的中点.

1)求证:平面BED平面SAB

2)求平面BED与平面SBC所成二面角(锐角)的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲乙两个班级均为 40 人,进行一门考试后,按学生考试成绩及格与不及格进行统计,甲班及格人数为 36 人,乙班及格人数为 24 人.

(1)根据以上数据建立一个22的列联表;

(2)试判断是否成绩与班级是否有关?

参考公式:

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

0.455

0.708

1.323

2.072

2.706

3.84

5.024

6.635

7.879

10.83

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为分别为的左顶点和上顶点,若的中点的纵坐标为.分别为的左、右焦点.

1)求椭圆的方程;

2)设直线交于两点,的重心分别为.若原点在以为直径的圆内,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某外国语学校举行的(高中生数学建模大赛)中,参与大赛的女生与男生人数之比为,且成绩分布在,分数在以上(含)的同学获奖.按女生、男生用分层抽样的方法抽取人的成绩作为样本,得到成绩的频率分布直方图如图所示.

(Ⅰ)求的值,并计算所抽取样本的平均值(同一组中的数据用该组区间的中点值作代表);

(Ⅱ)填写下面的列联表,并判断在犯错误的概率不超过的前提下能否认为“获奖与女生、男生有关”.

女生

男生

总计

获奖

不获奖

总计

附表及公式:

其中,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,点,过动点作直线的垂线,垂足为,且.记动点的轨迹为曲线.

1)求曲线的方程;

2)过点的直线交曲线于不同的两点.

①若为线段的中点,求直线的方程;

②设关于轴的对称点为,求面积的取值范围.

查看答案和解析>>

同步练习册答案