分析 由cos2x>0,可得$2kπ-\frac{π}{2}$<2x<2kπ+$\frac{π}{2}$,解出即可得出.
解答 解:由cos2x>0,可得$2kπ-\frac{π}{2}$<2x<2kπ+$\frac{π}{2}$,解得$kπ-\frac{π}{4}$<x<kπ+$\frac{π}{4}$,k∈Z.
∴函数y=lg(cos2x)的定义域为{x|$kπ-\frac{π}{4}$<x<kπ+$\frac{π}{4}$,k∈Z}.
故答案为:{x|$kπ-\frac{π}{4}$<x<kπ+$\frac{π}{4}$,k∈Z}.
点评 本题考查了对数函数与三角函数的单调性,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{6}$ | B. | $\frac{1}{12}$ | C. | $\frac{11}{12}$ | D. | $\frac{1}{18}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{4}{3}$ | B. | $\frac{3}{4}$ | C. | -$\frac{3}{4}$ | D. | -$\frac{4}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com