精英家教网 > 高中数学 > 题目详情

【题目】如图,已知椭圆 (a>b>0)的离心率为 ,以该椭圆上的点和椭圆的左、右焦点F1 , F2为顶点的三角形的周长为 .一等轴双曲线的顶点是该椭圆的焦点,设P为该双曲线上异于顶点的任一点,直线PF1和PF2与椭圆的交点分别为A、B和C、D.

(1)求椭圆和双曲线的标准方程;
(2)设直线PF1、PF2的斜率分别为k1、k2 , 证明k1k2=1;
(3)探究 是否是个定值,若是,求出这个定值;若不是,请说明理由.

【答案】
(1)解:设椭圆的半焦距为c,由题意知: ,2a+2c=4( +1)

解得a=2 ,c=2,

又a2=b2+c2,解得b=2.

故椭圆的标准方程为

由题意设等轴双曲线的标准方程为 (m>0),

因为等轴双曲线的顶点是椭圆的焦点.

所以m=2,

因此双曲线的标准方程为


(2)证明:设P(x0,y0),F1(﹣2,0),F2(2,0)

则k1=

因为点P在双曲线x2﹣y2=4上,所以

因此

故k1k2=1.


(3)解:设A(x1,y1),B(x2,y2),

由于PF1的方程为y=k1(x+2),将其代入椭圆方程得

所以

所以 = =

同理可得

又k1k2=1,

所以 =

恒成立,即 是定值


【解析】(1)由椭离心率为 ,以该椭圆上的点和椭圆的左、右焦点F1 , F2为顶点的三角形的周长为 ,求出a,b,从而能求出椭圆的标准方程,设等轴双曲线的标准方程为 ,由等轴双曲线的顶点是椭圆的焦点,求出m,从而能求出双曲线的标准方程.(2)设P(x0 , y0),F1(﹣2,0),F2(2,0),则k1= ,由此能证明k1k2=1.(3)PF1的方程为y=k1(x+2),将其代入椭圆方程得 ,由此利用韦达定理、弦长公式,结合已知条件能推导出 是定值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列{bn}是首项b1=1,b4=10的等差数列,设bn+2=3 an(n∈n*).
(1)求证:{an}是等比数列;
(2)记cn= ,求数列{cn}的前n项和Sn
(3)记dn=(3n+1)Sn , 若对任意正整数n,不等式 + +…+ 恒成立,求整数m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某单位共有老、中、青职工430人,其中青年职工160人,中年职工人数是老年职工人数的2倍.为了解职工身体状况,现采用分层抽样方法进行调查,在抽取的样本中有青年职工32人,则该样本中的老年职工人数为(
A.9
B.18
C.27
D.36

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个盒子中装有4张卡片,每张卡片上写有1个数字,数字分别是1,2,3,4,现从盒子中随机抽取卡片.
(1)若一次从中随机抽取3张卡片,求3张卡片上数字之和大于或等于8的概率;
(2)若随机抽取1张卡片,放回后再随机抽取1张卡片,求两次抽取的卡片中至少一次抽到数字3的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商店计划每天购进某商品若干件,商店每销售1件该商品可获利50元.若供大于求,剩余商品全部退回,则每件商品亏损10元;若供不应求,则从外部调剂,此时每件调剂商品可获利30元.

若商店一天购进该商品10件,求当天的利润y单位:元关于当天需求量n单位:件,n∈N的函数解析式;

商店记录了50天该商品的日需求量单位:件,整理得下表:

日需求量n

8

9

10

11

12

频数

10

10

15

10

5

假设该店在这50天内每天购进10件该商品,求这50天的日利润单位:元的平均数;

若该店一天购进10件该商品,记“当天的利润在区间”为事件A,求PA的估计值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“奶茶妹妹”对某时间段的奶茶销售量及其价格进行调查,统计出售价x元和销售量y杯之间的一组数据如下表所示:

价格x

5

5.5

6.5

7

销售量y

12

10

6

4

通过分析,发现销售量y对奶茶的价格x具有线性相关关系.
(Ⅰ)求销售量y对奶茶的价格x的回归直线方程;
(Ⅱ)欲使销售量为13杯,则价格应定为多少?
注:在回归直线y= 中, = =146.5.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在数列{an}中,a1=1,an+1=2an+1 (I)求证数列{an+1}是等比数列;
(II)设cn=n(an+1),求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为考察高中生的性别与是否喜欢数学课程之间的关系,在某城市的某校高中生中,从男生中随机抽取了70人,从女生中随机抽取了50人,男生中喜欢数学课程的占,女生中喜欢数学课程的占,得到如下列联表.

喜欢数学课程

不喜欢数学课程

合计

男生

女生

合计

0.150

0.100

0.050

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(1)请将列联表补充完整;试判断能否有90%的把握认为喜欢数学课程与否与性别有关;

(2)从不喜欢数学课程的学生中采用分层抽样的方法,随机抽取6人,现从6人中随机抽取2人,若所选2名学生中的女生人数为,求的分布列及数学期望.

附:,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】求证:1﹣ + +…+ = + +…+ ,n∈N*

查看答案和解析>>

同步练习册答案