精英家教网 > 高中数学 > 题目详情
设点F1(-c,0)、F2(c,0)分别是双曲线
x2
a2
-
y2
b2
=1
的左右焦点,P为双曲线上的一点,且
PF1
PF2
=-
2c2
3
,则此双曲线的离心率的取值范围是
[
3
,+∞
[
3
,+∞
分析:设P(m,n),得
PF1
PF2
=m2-c2+n2=-
2
3
c2,整理得:m2+n2=
1
3
c2…(1).根据点P(m,n)是双曲线
x2
a2
-
y2
b2
=1
上的点,得n2=b2
m2
a2
-1),代入(1)式并整理得:
c2
a2
m2=
4
3
c2-a2…(2).最后根据m满足m2≥a2,代入(2)式解关于a、c的不等式,得c
3
a
,由此即可得出此双曲线的离心率的取值范围.
解答:解:设P(m,n),得
PF1
=(-c-m,-n)
PF2
=(c-m,-n)

PF1
PF2
=(-c-m)(c-m)+n2=-
2
3
c2,即m2+n2=
1
3
c2,…(1)
∵P(m,n)是双曲线
x2
a2
-
y2
b2
=1
上的点,
m2
a2
-
n2
b2
=1
,解得n2=b2
m2
a2
-1),代入(1)式得
c2
a2
m2-b2=
1
3
c2,整理得:
c2
a2
m2=
4
3
c2-a2,…(2)
∵点P在双曲线上,横坐标满足|m|≥a
∴m2≥a2,代入(2)式,得
4
3
c2-a2
c2
a2
•a2=c2
化简,得
1
3
c2
≥a2,所以c
3
a

因此双曲线的离心率e=
c
a
3
,得e∈[
3
,+∞

故答案为:[
3
,+∞
点评:本题给出双曲线上点P指向两个焦点F1、F2的向量的数量积,求此双曲线离心率的取值范围,着重考查了向量数量积的公式和双曲线的简单几何性质等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•揭阳一模)如图,设点F1(-c,0)、F2(c,0)分别是椭圆C:
x2
a2
+y2=1(a>1)
的左、右焦点,P为椭圆C上任意一点,且
PF1
PF2
最小值为0.
(1)求椭圆C的方程;
(2)设直线l1:y=kx+m,l2:y=kx+n,若l1、l2均与椭圆C相切,证明:m+n=0;
(3)在(2)的条件下,试探究在x轴上是否存在定点B,点B到l1,l2的距离之积恒为1?若存在,请求出点B坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•揭阳一模)如图,设点F1(-c,0)、F2(c,0)分别是椭圆C:
x2
a2
+y2=1(a>1)
的左、右焦点,P为椭圆C上任意一点,且
PF1
PF2
最小值为0.
(1)求椭圆C的方程;
(2)若动直线l1,l2均与椭圆C相切,且l1∥l2,试探究在x轴上是否存在定点B,点B到l1,l2的距离之积恒为1?若存在,请求出点B坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•闸北区一模)设点F1(-c,0),F2(c,0)分别是椭圆C:
x2
a2
+y2=1(a>1)
的左、右焦点,P为椭圆C上任意一点,且
PF1
PF2
最小值为0.
(1)求椭圆C的方程;
(2)设定点D(m,0),已知过点F2且与坐标轴不垂直的直线l与椭圆交于A、B两点,满足|AD|=|BD|,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源:2013-2014学年广东省汕头市金山中学高三(上)开学摸底数学试卷(文科)(解析版) 题型:解答题

如图,设点F1(-c,0)、F2(c,0)分别是椭圆的左、右焦点,P为椭圆C上任意一点,且最小值为0.
(1)求椭圆C的方程;
(2)设直线l1:y=kx+m,l2:y=kx+n,若l1、l2均与椭圆C相切,证明:m+n=0;
(3)在(2)的条件下,试探究在x轴上是否存在定点B,点B到l1,l2的距离之积恒为1?若存在,请求出点B坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案