分析 由题意画出图形,数形结合可得使A∩B=∅的实数a的取值范围.
解答 解:A={(x,y)||x|≤1,|y|≤1},B={(x,y)|(x-a)2+(y-a)2<1},
如图,|ON|=$\sqrt{2}+1$,则|OM|=1+$\frac{\sqrt{2}}{2}$,
要使A∩B=∅,则$a≤-1-\frac{\sqrt{2}}{2}$或a$≥1+\frac{\sqrt{2}}{2}$.
故答案为:(-$∞,-1-\frac{\sqrt{2}}{2}$]∪[1+$\frac{\sqrt{2}}{2}$,+∞).
点评 本题主要考查二元一次不等式(组)与平面区域、集合关系中的参数取值问题、不等式的解法等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | ${(\frac{1}{2})}^{\frac{2}{3}}$<${(\frac{1}{5})}^{\frac{2}{3}}$<${(\frac{1}{2})}^{\frac{1}{3}}$ | B. | ${(\frac{1}{2})}^{\frac{1}{3}}$<${(\frac{1}{2})}^{\frac{2}{3}}$<${(\frac{1}{5})}^{\frac{2}{3}}$ | ||
C. | ${(\frac{1}{5})}^{\frac{2}{3}}$<${(\frac{1}{2})}^{\frac{1}{3}}$<${(\frac{1}{2})}^{\frac{2}{3}}$ | D. | ${(\frac{1}{5})}^{\frac{2}{3}}$<${(\frac{1}{2})}^{\frac{2}{3}}$<${(\frac{1}{2})}^{\frac{1}{3}}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com