已知数列是各项均不为0的等差数列,公差为d,为其前n项和,且满足,.数列满足,, 为数列的前n项和.
(1)求数列的通项公式和数列的前n项和;
(2)若对任意的,不等式恒成立,求实数的取值范围;
(3)是否存在正整数,使得成等比数列?若存在,求出所有的值;若不存在,请说明理由.
(1)
(2). ……9分
(3) 存在
【解析】试题分析:(1)由可令n=1,n=2得到关于a1与d的两个方程,从而可解出a1和d,得到an的通项公式.因为,所以显然要采用裂项求和的方法求出其前n项和.
(2)因为本小题是关于n的不等式恒成立问题,应对n的奇偶进行讨论.分别再对得到的结果求交集.
(3)解本小题的关键由,
若成等比数列,则,即.
从而得,据此得到m的范围,找到m的值,进一步得到n的值.
解:(1)在中,令,,
得 即 ……1分
解得,, ……2分
又时,满足,
, ……3分
. ……4分
(2)①当为偶数时,要使不等式恒成立,即需不等式恒成立. ……5分
,等号在时取得
此时 需满足 ……6分
②当为奇数时,要使不等式恒成立,即需不等式恒成立. ……7分
是随的增大而增大, 时取得最小值.
此时 需满足. ……8分
综合①、②可得的取值范围是. ……9分
(3),
若成等比数列,则,……10分
即.
由,可得, ……12分
即,
. ……13分
又,且,所以,此时.
因此,当且仅当, 时,数列中的成等比数列. …14分
[另解] 因为,故,即,
.
考点:本小题主要考查等差、等比数列的定义、通项、求和、对数的运算、直线方程与不等式等知识,考查化归、转化、方程的数学思想方法,以及抽象概括能力、运算求解能力、创新能力和综合应用能力.
点评:(1)由an与Sn的关系求通项要注意根据需要给n赋值,每赋一个值就可得到一个方程.
(2)有关n的不等式恒成立问题,要注意题目当中如果有要注意按n为奇偶进行讨论.
(3)解小题的关键是利用成等比数列,建立n与m的等式关系,下一步难点在于对式子的变形处理上,要注意体会其方法.
科目:高中数学 来源: 题型:
已知数列是各项均不为0的等差数列,公差为,为其前项和,且满足,.数列满足,为数列的前项和.
(1)求,和;
(2)若对任意的,不等式恒成立,求实数的取值范围;
(3)是否存在正整数,使得成等比数列?若存在,求出所有的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源:2014届广东省“十校”高三第一次联考文科数学试卷(解析版) 题型:解答题
已知数列是各项均不为0的等差数列,公差为,为其前n项和,且满足,.数列满足,, 为数列的前项和.
(1)求数列的通项公式;
(2)若对任意的,不等式恒成立,求实数的取值范围;
(3)是否存在正整数,使得成等比数列?若存在,求出所有
的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源:2014届广东省汕头市高二10月月考文科数学试卷(解析版) 题型:解答题
(本小题满分14分)已知数列是各项均不为的等差数列,公差为,为其前项和,且满足,.数列满足,为数列的前项和.
(1)求、和;
(2)若对任意的,不等式恒成立,求实数的取值范围;
(3)是否存在正整数,使得成等比数列?若存在,求出所有
的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年上海市长宁区高三4月教学质量检测(二模)理科数学试卷(解析版) 题型:解答题
(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分。已知数列是各项均不为的等差数列,公差为,为其前项和,且满足
,.数列满足,为数列的前n项和.
(1)求、和;
(2)若对任意的,不等式恒成立,求实数的取值范围
查看答案和解析>>
科目:高中数学 来源:2010-2011学年深圳市高三第一次调研考试数学理卷 题型:解答题
(本小题满分14分)
已知数列是各项均不为的等差数列,公差为,为其前项和,且满足
,.数列满足,为数列的前n项和.
(1)求、和;
(2)若对任意的,不等式恒成立,求实数的取值范围;
(3)是否存在正整数,使得成等比数列?若存在,求出所有
的值;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com