精英家教网 > 高中数学 > 题目详情
(2013•丰台区二模)已知直线x=2,x=4与函数y=log2x的图象交于A,B两点,与函数y=log4x的图象交于C,D两点,则直线AB,CD的交点坐标是
(0,0)
(0,0)
分析:联立方程可解得A、B、C、D的坐标,进而可得直线AB,CD的方程,联立方程可的交点坐标.
解答:解:联立x=2与y=log2x可得
x=2
y=1
,故A(2,1),同理可得B(4,2),
联立x=2与y=log4x可得
x=2
y=log42=
1
2

故C(2,
1
2
),同理可得D(4,1)
故直线AB的斜率为k1=
2-1
4-2
=
1
2
,故方程为y-1=
1
2
(x-2),①
直线CD的斜率为k2=
1-
1
2
4-2
=
1
4
,故方程为y-1=
1
4
(x-4),②
联立①②可解得
x=0
y=0
,故直线AB,CD的交点坐标是(0,0)
故答案为:(0,0)
点评:本题考查两直线交点的坐标,涉及方程组的解法,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•丰台区二模)已知偶函数f(x)(x∈R),当x∈(-2,0]时,f(x)=-x(2+x),当x∈[2,+∞)时,f(x)=(x-2)(a-x)(a∈R).
关于偶函数f(x)的图象G和直线l:y=m(m∈R)的3个命题如下:
①当a=2,m=0时,直线l与图象G恰有3个公共点;
②当a=3,m=
1
4
时,直线l与图象G恰有6个公共点;
③?m∈(1,+∞),?a∈(4,+∞),使得直线l与图象G交于4个点,且相邻点之间的距离相等.
其中正确命题的序号是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•丰台区二模)若函数f(x)=ax(a>0,a≠1)在[-2,1]上的最大值为4,最小值为m,则m的值是
1
16
1
2
1
16
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•丰台区二模)已知椭圆C:
x2
4
+y2=1
的短轴的端点分别为A,B,直线AM,BM分别与椭圆C交于E,F两点,其中点M (m,
1
2
) 满足m≠0,且m≠±
3

(Ⅰ)求椭圆C的离心率e;
(Ⅱ)用m表示点E,F的坐标;
(Ⅲ)若△BME面积是△AMF面积的5倍,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•丰台区二模)已知偶函数f(x)(x∈R),当x∈(-2,0]时,f(x)=-x(2+x),当x∈[2,+∞)时,f(x)=(x-2)(a-x)(a∈R).
关于偶函数f(x)的图象G和直线l:y=m(m∈R)的3个命题如下:
①当a=4时,存在直线l与图象G恰有5个公共点;
②若对于?m∈[0,1],直线l与图象G的公共点不超过4个,则a≤2;
③?m∈(1,+∞),?a∈(4,+∞),使得直线l与图象G交于4个点,且相邻点之间的距离相等.
其中正确命题的序号是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•丰台区二模)下列四个函数中,最小正周期为π,且图象关于直线x=
π
12
对称的是(  )

查看答案和解析>>

同步练习册答案