精英家教网 > 高中数学 > 题目详情
传说古希腊毕达哥拉斯学派的数学家经常在沙滩上面画点或用小石子表示数.他们研究过如图所示的三角形数:

将三角形数1,3,6,10,…记为数列{an},将可被5整除的三角形数按从小到大的顺序组成一个新数列{bn},可以推测:
(Ⅰ)b2014是数列{an}中的第
 
项;
(Ⅱ)若n为正偶数,则b1-b3+b5-b7+…+(-1)n-1b2n-1
 
.(用n表示)
考点:数列的求和,归纳推理
专题:等差数列与等比数列
分析:(I)将三角形数1,3,6,10,…记为数列{an},由a1=1,当n≥2时,an-an-1=n,利用“累加求和”可得an=
n(n+1)
2
.只有当n或n+1能够被5整除时,an可被5整除,
因此数列{an},将可被5整除的三角形数按从小到大的顺序组成一个新数列{bn}为:a4,a5,a9,a10,…,可得b2014是数列{an}中的第
2014
2
×5
项.
(II)由(I)可得:b1-b3=a4-a9=
4×5
2
-
9×10
2
=-35,b5-b7=a14-a19,b9-b11=a24-a29,….可得b2n-3-b2n-1=a5n-6-a5n-1=-25n+15,
可得b1-b3+b5-b7+…+(-1)n-1b2n-1=-25×(2+4+…+2k)+15k(n=2k,k∈N*).
解答: 解:(I)将三角形数1,3,6,10,…记为数列{an},∵a1=1,当n≥2时,an-an-1=n,
∴an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1=n+(n-1)+…+2+1=
n(n+1)
2

只有当n或n+1能够被5整除时,an可被5整除,
因此数列{an},将可被5整除的三角形数按从小到大的顺序组成一个新数列{bn}为:a4,a5,a9,a10,…,
可得b2014是数列{an}中的第
2014
2
×5
=5035项.
(II)由(I)可得:b1-b3=a4-a9=
4×5
2
-
9×10
2
=-35,b5-b7=a14-a19,b9-b11=a24-a29,….
∴b2n-3-b2n-1=a5n-6-a5n-1=
(5n-6)(5n-5)
2
-
(5n-1)(5n-1+1)
2
=-25n+15,
∴b1-b3+b5-b7+…+(-1)n-1b2n-1=-25×(2+4+…+2k)+15k=-25k2-10k=-
25n2+20n
4
(n=2k,k∈N*).
故答案分别为:5035,-
25n2+20n
4
(n=2k,k∈N*).
点评:本题考查了等差数列的通项公式及其前n项和公式、整数的整除理论、分组求和方法,考查了推理能力与计算能力,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知x∈(0,
π
2
)时,函数h(x)=
1+2sin2x
sin2x
的最小值为b,若定义在R上的函数f(c)满足:对任意的x,y,都有f(x+y)=f(x)+f(y)-b成立,设M、N分别是f(x)在[-b,b]上的最大值与最小值,则M+N的值为(  )
A、
3
B、2
C、2
3
D、4
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P(-2,6),F2为椭圆
x2
25
+
y2
16
=1的右焦点,点M在椭圆上,求|MP|+|MF2|最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

正方体ABCD-A1B1C1D1的棱长为2,E为棱A1B1中点,P、Q分别为棱AD,DC上的动点,则四面体PEA1Q体积的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(1+3x)(2x-
1
x2
n(n∈N*)的展开式中没有常数项,且4<n<8,求展开式中含x5的系数.

查看答案和解析>>

科目:高中数学 来源: 题型:

候鸟每年都要随季节的变化而进行大规模地迁徒,研究某种鸟类的专家发现,该种鸟类的飞行速度v(单位:m/s)与其耗氧量Q之间的关系为:v=a+blog3
Q
10
(其中a,b是实数),据统计,该种鸟类在静止的时间其耗氧量为30个单位,而其耗氧量为90个单位时,其飞行速度为1m/s.
(1)求出a,b的值;
(2)若这种鸟类为赶路程,飞行的速度不能低于2m/s,则其耗氧量至少要多少个单位.

查看答案和解析>>

科目:高中数学 来源: 题型:

小张经营某一消费品专卖店,已知该消费品的进价为每件40元,该店每月销售量y(百件)与销售单价x(元/件)之间的关系为:y=
-2x+140,(40≤x≤60)
-
1
2
x+50,(60<x≤80)

职工每人每月工资为1000元,该店还应交付的其它费用为每月10000元.
(1)当销售价为每件50元时,该店正好收支平衡,求该店的职工人数;
(2)若该店只有20名职工,问销售单价定为多少元时,该专卖店月利润最大?并求出最大利润(利润=收入-支出)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在直二面角D-AB-E中,四边形ABCD是边长为2的正方形,△AEB是等腰直角三角形,其中∠AEB=90°,则点D到平面ACE的距离为(  )
A、
3
3
B、
2
3
3
C、
3
D、2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:“?x∈R,总有x2-x+1>0”的否定是“?x∈R,使得x2-x+1≤0”;命题q:在△ABC中,“A>
π
4
”是“sinA>
2
2
”的必要不充分条件.则有(  )
A、p真q真B、p真q假
C、p假q真D、p假q假

查看答案和解析>>

同步练习册答案