精英家教网 > 高中数学 > 题目详情
14.求下列函数的值域:
①y=sin(3x+$\frac{π}{6}$)(-$\frac{π}{6}≤x≤\frac{π}{6}$);
②y=2sin(2x+$\frac{π}{6}$),x$∈[-\frac{π}{6},\frac{π}{3}]$;
③y=sin($\frac{π}{4}-2x$)($-\frac{π}{4}≤x≤\frac{π}{4}$)

分析 求出函数的相位角的范围,结合正弦函数的图象和性质,可得相应正弦型函数的值域.

解答 解:①∵-$\frac{π}{6}≤x≤\frac{π}{6}$,
∴-$\frac{π}{3}$≤3x+$\frac{π}{6}$≤$\frac{2π}{3}$,
当3x+$\frac{π}{6}$=-$\frac{π}{3}$时,函数取最小值-$\frac{\sqrt{3}}{2}$,
当3x+$\frac{π}{6}$=$\frac{π}{2}$时,函数取最大值1,
故函数y=sin(3x+$\frac{π}{6}$)(-$\frac{π}{6}≤x≤\frac{π}{6}$)的值域为[-$\frac{\sqrt{3}}{2}$,1];
②∵x$∈[-\frac{π}{6},\frac{π}{3}]$,
∴2x+$\frac{π}{6}$$∈[-\frac{π}{6},\frac{5π}{6}]$,
当2x+$\frac{π}{6}$=-$\frac{π}{6}$时,函数取最小值-$\frac{1}{2}$,
当2x+$\frac{π}{6}$=$\frac{π}{2}$时,函数取最大值1,
故函数y=2sin(2x+$\frac{π}{6}$),x$∈[-\frac{π}{6},\frac{π}{3}]$的值域为[-$\frac{1}{2}$,1];
③∵$-\frac{π}{4}≤x≤\frac{π}{4}$,
∴$-\frac{π}{4}≤$$\frac{π}{4}-2x$$≤\frac{3π}{4}$,
当2x+$\frac{π}{6}$=-$\frac{π}{4}$时,函数取最小值-$\frac{\sqrt{2}}{2}$,
当2x+$\frac{π}{6}$=$\frac{π}{2}$时,函数取最大值1,
故函数y=sin($\frac{π}{4}-2x$)($-\frac{π}{4}≤x≤\frac{π}{4}$)的值域为[-$\frac{\sqrt{2}}{2}$,1];

点评 本题考查的知识点是正弦型函数的图象和性质,熟练掌握正弦型函数的图象和性质,是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.不等式(x-2)(3-x)>0的解集是(  )
A.(-∞,2)B.(3,+∞)C.(2,3)D.(-∞,2)∪(3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若数列{an}为无穷等比数列,且$\underset{lim}{n→∞}$(a1+a2+a3+…+an)=$\frac{1}{7}$,则a1的取值范围是{x|$0<x<\frac{2}{7}$,且$x≠\frac{1}{7}$}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知命题p:点M(1,3)不在圆(x+m)2+(y-m)2=16的内部,命题q:“曲线${C_1}:\frac{x^2}{m^2}+\frac{y^2}{2m+8}=1$表示焦点在x轴上的椭圆”,命题s:“曲线${C_2}:\frac{x^2}{m-t}+\frac{y^2}{m-t-1}=1$表示双曲线”.
(1)若“p且q”是真命题,求m的取值范围;
(2)若q是s的必要不充分条件,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.由等式${x^3}+{λ_1}{x^2}+{λ_2}x+{λ_3}={(x+1)^3}+{μ_1}{(x+1)^2}+{μ_2}(x+1)+{μ_3}$定义映射f:(λ1,λ2,λ3)=(μ1,μ2,μ3),则f(1,2,3)=(-2,3,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.有一块三角形边角地,如图中△ABC,其中AB=8(百米),AC=6(百米),∠A=60°,某市为迎接2500年城庆,欲利用这块地修一个三角形形状的草坪(图中△AEF)供市民休闲,其中点E在边AB上,点F在边AC上,规划部门要求△AEF的面积占△ABC面积的一半,记△AEF的周长为l(百米).
(1)如果要对草坪进行灌溉,需沿△AEF的三边安装水管,求水管总长度l的最小值;
(2)如果沿△AEF的三边修建休闲长廊,求长廊总长度l的最大值,并确定此时E、F的位置.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.作出下列函数的图象:
(1)f(x)=|sinx|,x∈[-π,2π];
(2)f(x)=sin|x|,x∈[-2π,2π].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.给出下列命题:
①函数$f(x)=\sqrt{1-x}+\sqrt{x-1}$既是奇函数,又是偶函数;
②f(x)=x和$g(x)=\frac{x^2}{x}$为同一函数;
③定义在R上的奇函数f(x)在(-∞,0)上单调递减,则f(x)在(-∞,+∞)上单调递减;
④函数$y=\frac{x}{{2{x^2}+1}}$的值域为$[-\frac{{\sqrt{2}}}{4},\frac{{\sqrt{2}}}{4}]$;
其中正确命题的序号是④.(写出所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设$\overrightarrow{a}$,$\overrightarrow{b}$是非零向量,k∈R,则$\overrightarrow{a}$=k$\overrightarrow{b}$是$\overrightarrow{a}$与$\overrightarrow{b}$平行的(  )
A.充分非必要条件B.必要非充分条件
C.充要条件D.既非充分非必要条件

查看答案和解析>>

同步练习册答案