精英家教网 > 高中数学 > 题目详情

【题目】直三棱柱中,分别是 的中点,为棱上的点.

(1)证明:

(2)是否存在一点,使得平面与平面所成锐二面角的余弦值为?若存在,说明点的位置,若不存在,说明理由.

【答案】1)略 2的中点

【解析】试题分析:对于问题(1)可以先证明两两垂直,然后再建立空间直角坐标系用向量法进行证明;对于问题(2)可在(1)中建立的坐标系下,分别求出平面与平面的法向量,再根据二面角的余弦公式,即可确定是否存在一点,使得平面与平面所成锐二面角的余弦值为.

试题解析:(1)证明:因为,所以

又因为,所以

又因为

所以

为原点建立如图所示的空间直角坐标系,则有

,即,则

,所以

因为,所以,所以

2)结论:存在一点,使得平面与平面所成锐二面角的余弦值为

理由如下:

由题可知面的法向量

设面的法向量为,则

因为

所以,即

,则

因为平面与平面所成锐二面角的余弦值为

所以,即

解得(舍),所以当中点时满足要求

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】函数的图象与轴交于点,周期是

(1)求函数解析式,并写出函数图象的对称轴方程和对称中心;

(2)已知点,点是该函数图象上一点,点的中点,当 时,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某同学在用120分钟做150分的数学试卷(分为卷Ⅰ和卷Ⅱ两部分)卷Ⅰ和卷Ⅱ所得分数分别为P(单位:分)Q(单位:分),在每部分做了20分钟的条件下发现它们与投入时间m(单位:分钟)的关系有经验公式.

(1)试建立数学总成绩y(单位:分)与对卷Ⅱ投入时间x(单位:分钟)的函数关系式并指明函数定义域;

(2)如何计划使用时间才能使得所得分数最高.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知矩形的长为2,宽为1 边分别在轴、轴的正半轴上, 点与坐标原点重合,将矩形折叠,使点落在线段上,设此点为.

(1)若折痕的斜率为-1,求折痕所在的直线的方程;

(2)若折痕所在直线的斜率为,( 为常数),试用表示点的坐标,并求折痕所在的直线的方程;

(3)当时,求折痕长的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某学校高三年级共800名男生中随机抽取50名测量身高,测量发现被测学生身高全部介于155cm和195cm之间,将测量结果按如下方式分成八组:第一组[155,160);第二组[160,165)、…、第八组[190,195],下图是按上述分组方法得到的频率分布直方图的一部分,已知第一组与第八组人数相同,第六组、第七组、第八组人数依次构成等差数列.

(1)估计这所学校高三年级全体男生身高180cm以上(含180cm)的人数;


2)求第六组、第七组的频率并补充完整频率分布直方图(如需增加刻度请在纵轴上标记出数据,并用直尺作图);

(3)由直方图估计男生身高的中位数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,经过点且斜率为的直线与椭圆有两个不同的交点

(1)求的取值范围;

(2)设椭圆与轴正半轴、轴正半轴的交点分别为,是否存在常数,使得向量共线?如果存在,求值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线,直线交此抛物线于不同的两个点

)当直线过点时,证明为定值.

)当时,直线是否过定点?若过定点,求出定点坐标;反之,请说明理由.

)记,如果直线过点,设线段的中点为,线段的中点为.问是否存在一条直线和一个定点,使得点到它们的距离相等?若存在,求出这条直线和这个定点;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆轴负半轴相交于点,与轴正半轴相交于点.

1)若过点的直线被圆截得的弦长为,求直线的方程;

2)若在以为圆心半径为的圆上存在点,使得 (为坐标原点),求的取值范围;

3)设是圆上的两个动点,点关于原点的对称点为,点关于轴的对称点为,如果直线轴分别交于,问是否为定值?若是求出该定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如下图,梯形中,,,, ,将沿对角线折起.设折起后点的位置为,并且平面 平面.给出下面四个命题:

;②三棱锥的体积为;③ 平面

平面平面.其中正确命题的序号是( )

A. ①② B. ③④ C. ①③ D. ②④

查看答案和解析>>

同步练习册答案