精英家教网 > 高中数学 > 题目详情
4.在△ABC中,角A,B,C所对的边分别为a,b,c,已知S△ABC=$\frac{\sqrt{3}}{12}$a2,b=2,则c+$\frac{4}{c}$的最大值为(  )
A.5$\sqrt{2}$B.8C.6$\sqrt{3}$D.12

分析 由已知结合正弦定理可得${a}^{2}=4\sqrt{3}c•sinA$,再与余弦定理结合可把c+$\frac{4}{c}$化为含有A的三角函数得答案.

解答 解:由S△ABC=$\frac{\sqrt{3}}{12}$a2 =$\frac{1}{2}bc•sinA$,且b=2,得${a}^{2}=4\sqrt{3}c•sinA$,
又由a2=b2+c2-2bc•cosA,得$8c(\frac{\sqrt{3}}{2}sinA+\frac{1}{2}cosA)=4+{c}^{2}$,
∴$sin(A+\frac{π}{6})=\frac{4+{c}^{2}}{8c}$,
则c+$\frac{4}{c}$=8sin($A+\frac{π}{6}$).
∴当A=$\frac{π}{3}$时,c+$\frac{4}{c}$有最大值为8.
故选:B.

点评 本题考查正弦定理和余弦定理的应用,考查了学生的灵活变形能力,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.有关命题的叙述,错误的个数为(  )
①命题“若p∨q为真命题,则p∧q为真命题”.
②“x=-1”是“x2-5x-6=0”的必要不充分条件.
③命题“?x∈R,使得x2+x+1<0”的否定是:“?x∈R,均有x2+x+1<0”.
④命题“sinx=siny,x=y”的逆否命题为真命题.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知a,b∈R,且a+b=1,则(a+1)2+(b+1)2的最小值为$\frac{9}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知,正方形ABCD-A1B1C1D1,E、M、F分别是AD、CD、CC1的中点,
求证:(1)EM∥平面BFD1
(2)A1E⊥平面ABF.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知定义在R上的函数f(x)=$\frac{b-{2}^{x}}{{2}^{x}+a}$是奇函数.
(1)求a,b的值;
(2)判断并证明f(x)在R上的单调性.
(3)若对任意的t∈R,不等式f(t2-2t)+f(-k)<0恒成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若扇形的圆心角为a(a为弧度制),半径为r,弧长为l=rα,周长为C,面积为S=$\frac{1}{2}$r2α.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在△ABC中,∠A=30°,a=3,b=3$\sqrt{2}$,∠B=45°或135°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若α、β满足α-β=π,则下列等式成立的是(  )
A.sinα=sinβB.cosα=cosβC.tanα=tanβD.sinα=cosβ

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=$\left\{\begin{array}{l}{(2-a)x-12,x≤7}\\{(a+2)^{x-6},x>7}\end{array}\right.$是R上的增函数.
(I)求实数a的取值范围;
(Ⅱ)若g(x)=-$\frac{1}{3}$x3+$\frac{1}{2}$x2+2ax(x∈[1,4])的最小值为-$\frac{16}{3}$.试比较f{(g(x))与f($\frac{10}{3}$)的大小,并说明理由.

查看答案和解析>>

同步练习册答案