【题目】《汉字听写大会》不断创收视新高,为了避免“书写危机”弘扬传统文化,某市大约10万名市民进行了汉字听写测试.现从某社区居民中随机抽取50名市民的听写测试情况,发现被测试市民正确书写汉字的个数全部在到之间,将测试结果按如下方式分成六组:第一组,第二组,…,第六组,如图是按上述分组方法得到的频率分布直方图.
(1)若电视台记者要从抽取的市民中选1人进行采访,求被采访人恰好在第1组或第4组的概率;
(2)已知第5,6两组市民中有3名女性,组织方要从第5,6两组中随机抽取2名市民组成弘扬传统文化宣传队,求至少有1名女性市民的概率.
【答案】(1)0.28,(2).
【解析】试题分析:(1)第1组或第4组的频率为,所以被采访人恰好在第1组或第4组的概率为0.28;(2)第5,6两组中共有6名市民,其中女性市民共3名,记3名男性市民为,,,3名女性市民为,,,穷举所有事件,求得至少有1名女性市民的概率为.
试题解析:
(1)被采访人恰好在第1组或第4组的频率为,
∴估计被采访人恰好在第1组或第4组的概率为0.28,
(2)第5,6两组的人数为,
∴第5,6两组中共有6名市民,其中女性市民共3名,
记第5,6两组中的3名男性市民分别为,,,3名女性市民分别为,,,
从第5,6两组中随机抽取2名市民组成宣传队,共有15个基本事件,
列举如下:,,,,,,,,,,,,,,,
至少有1名女性,,,,,,,,,,,,共12个基本事件,
∴从第5,6两组中随机抽取2名市民组成宣传务队,至少有1名女性的概率为.
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,点的坐标为,直线的参数方程为(为参数).以坐标原点为极点,以轴的非负半轴为极轴,选择相同的单位长度建立极坐标系,圆极坐标方程为.
(Ⅰ)当时,求直线的普通方程和圆的直角坐标方程;
(Ⅱ)直线与圆的交点为、,证明:是与无关的定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图是某市3月1日至14日的空气质量指数趋势图.空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染.某人随机选择3月1日至3月13日中的某一天到达该市,并停留2天.
(Ⅰ)求3月1日到14日空气质量指数的中位数;
(Ⅱ)求此人到达当日空气重度污染的概率;
(Ⅲ)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某产品按行业生产标准分成8个等级,等级系数X依次为1,2,…8,其中为标准,为标准. 已知甲厂执行标准生产该产品,产品的零售价为6元/件; 乙厂执行标准生产该产品,产品的零售价为元/件,假定甲, 乙两厂的产品都符合相应的执行标准.
(Ⅰ)已知甲厂产品的等级系数的概率分布列如下所示:
5 | 6 | 7 | 8 | |
0.4 | b | 0.1 |
且的数学期望, 求a,b的值;
(Ⅱ)为分析乙厂产品的等级系数,从该厂生产的产品中随机抽取30件,相应的等级系数组成一个样本,数据如下:
用这个样本的频率分布估计总体分布,将频率视为概率,求等级系数的数学期望;
(Ⅲ)在(Ⅰ),(Ⅱ)的条件下,若以“性价比”为判断标准,则哪个工厂的产品更具可购买性?说明理由.
注: ①产品的“性价比”=;②“性价比”大的产品更具可购买性.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了解户籍性别对生育二胎选择倾向的影响,某地从育龄人群中随机抽取了容量为100的调查样本,其中城镇户籍与农民户籍各50人;男性60人,女性40人,绘制不同群体中倾向选择生育二胎与倾向选择不生育二胎的人数比例图(如图所示),其中阴影部分表示倾向选择生育二胎的对应比例,则下列叙述中错误的是( )
A. 是否倾向选择生育二胎与户籍有关
B. 是否倾向选择生育二胎与性别无关
C. 倾向选择生育二胎的人员中,男性人数与女性人数相同
D. 倾向选择生育二的人员中,农村户籍人数少于城镇户籍人数
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校高一200名学生的期中考试语文成绩服从正态分布,数学成绩的频数分布直方图如下:
(1)计算这次考试的数学平均分,并比较语文和数学哪科的平均分较高(假设数学成绩在频率分布直方图中各段是均匀分布的);
(2)如果成绩大于85分的学生为优秀,这200名学生中本次考试语文、数学优秀的人数大约各多少人?
(3)如果语文和数学两科都优秀的共有4人,从(2)中的这些同学中随机抽取3人,设三人中两科都优秀的有人,求的分布列和数学期望.
(附参考公式)若,则,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】平面直角坐标系中,已知椭圆()的左焦点为,离心率为,过点且垂直于长轴的弦长为.
(1)求椭圆的标准方程;
(2)设点分别是椭圆的左、右顶点,若过点的直线与椭圆相交于不同两点、.
①求证:;
②求面积的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com