【题目】等差数列首项和公差都是,记的前n项和为,等比数列各项均为正数,公比为q,记的前n项和为:
(1)写出构成的集合A;
(2)若将中的整数项按从小到大的顺序构成数列,求的一个通项公式;
(3)若q为正整数,问是否存在大于1的正整数k,使得同时为(1)中集合A的元素?若存在,写出所有符合条件的的通项公式,若不存在,请说明理由.
【答案】(1);(2)n为奇数,;n为偶数,;(3)存在;或或.
【解析】
(1)直接由等差数列的求和公式得到,再把分别代入,即可求出集合;(2)写出,根据整数项构成,得到或为的整数倍,从而得到的通项;(3)根据的前n项和为,根据同时为(1)中集合A的元素,进行分类讨论,从而得到的通项公式.
(1)因为等差数列的首项和公差都是,
所以.
把分别代入上式,
得到;
(2)由(1)得,
因为中的整数项按从小到大的顺序构成数列,
所以或为的整数倍,
①当,即时,
此时是的奇数项,所以
所以,
②当时,
此时是的偶数项,所以
所以
综上所述,为奇数,;为偶数,;
(3)①当时,,,
所以,
同时为(1)中集合A的元素,
所以,,得,
所以,
所以;
②当时,,
所以,
因为为正整数,正整数大于,
所以i)当时,,
得到,此时,,
所以,得,
故;
ii)当时,,得,此时,,
所以,得,
故;
iii)当,,时,找不到满足条件的.
综上所述,存在符合条件的,
通项公式为:或或.
科目:高中数学 来源: 题型:
【题目】抛物线的方程为,过抛物线上一点作斜率为的两条直线分别交抛物线于两点(三点互不相同),且满足:
(1)求抛物线的焦点坐标和准线方程;
(2)当时,若点的坐标为,求为钝角时点的纵坐标的取值范围;
(3)设直线上一点,满足,证明线段的中点在轴上;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:的中心为,一个方向向量为的直线与只有一个公共点
(1)若且点在第二象限,求点的坐标;
(2)若经过的直线与垂直,求证:点到直线的距离;
(3)若点、在椭圆上,记直线的斜率为,且为直线的一个法向量,且求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设点E,F分别是棱长为2的正方体的棱AB,的中点.如图,以C为坐标原点,射线CDCB分别是x轴y轴z轴的正半轴,建立空间直角坐标系.
(1)求向量与的数量积;
(2)若点M,N分别是线段与线段上的点,问是否存在直线MN,平面ABCD?若存在,求点M,N的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,三棱锥中,底面ABC,M是 BC的中点,若底面ABC是边长为2的正三角形,且PB与底面ABC所成的角为. 求:
(1)三棱锥的体积;
(2)异面直线PM与AC所成角的大小. (结果用反三角函数值表示)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义在上的函数,如果满足:对任意,存在常数,都有成立,则称是上的有界函数,其中称为函数的上界.
(1)设,判断在上是否为有界函数,若是,请说明理由,并写出的所有上界的集合;若不是,也请说明理由;
(2)若函数在上是以为上界的有界函数,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,倾斜角为a的直线经过抛物线的焦点F,且与抛物线交于A、B两点.
(1)求抛物线的焦点F的坐标及准线的方程;
(2)若a为锐角,作线段AB的垂直平分线m交x轴于点P,证明|FP|-|FP|cos2a为定值,并求此定值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com