精英家教网 > 高中数学 > 题目详情

【题目】等差数列首项和公差都是,记的前n项和为,等比数列各项均为正数,公比为q,记的前n项和为

1)写出构成的集合A

2)若将中的整数项按从小到大的顺序构成数列,求的一个通项公式;

3)若q为正整数,问是否存在大于1的正整数k,使得同时为(1)中集合A的元素?若存在,写出所有符合条件的的通项公式,若不存在,请说明理由.

【答案】1;(2n为奇数,n为偶数,;(3)存在;.

【解析】

1)直接由等差数列的求和公式得到,再把分别代入,即可求出集合;(2)写出,根据整数项构成,得到的整数倍,从而得到的通项;(3)根据的前n项和为,根据同时为(1)中集合A的元素,进行分类讨论,从而得到的通项公式.

1)因为等差数列的首项和公差都是

所以.

分别代入上式,

得到

2)由(1)得

因为中的整数项按从小到大的顺序构成数列

所以的整数倍,

①当,即时,

此时的奇数项,所以

所以

②当时,

此时的偶数项,所以

所以

综上所述,为奇数,为偶数,

3)①当时,

所以

同时为(1)中集合A的元素,

所以,,得

所以

所以

②当时,

所以

因为为正整数,正整数大于

所以i)当时,

得到,此时

所以,得

ii)当时,,得,此时

所以,得

iii)当时,找不到满足条件的.

综上所述,存在符合条件的

通项公式为:.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】抛物线的方程为,过抛物线上一点作斜率为的两条直线分别交抛物线两点(三点互不相同),且满足

1)求抛物线的焦点坐标和准线方程;

2)当时,若点的坐标为,求为钝角时点的纵坐标的取值范围;

3)设直线上一点,满足,证明线段的中点在轴上;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的中心为,一个方向向量为的直线只有一个公共点

1)若且点在第二象限,求点的坐标;

2)若经过的直线垂直,求证:点到直线的距离

3)若点在椭圆上,记直线的斜率为,且为直线的一个法向量,且的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设点E,F分别是棱长为2的正方体的棱AB,的中点.如图,以C为坐标原点,射线CDCB分别是xyz轴的正半轴,建立空间直角坐标系.

(1)求向量的数量积;

(2)若点M,N分别是线段与线段上的点,问是否存在直线MN,平面ABCD?若存在,求点M,N的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知关于x的一元二次不等式ax2+2x+b>0的解集为{x|x≠c},则(其中a+c≠0)的取值范围为_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱锥中,底面ABCM BC的中点,若底面ABC是边长为2的正三角形,且PB与底面ABC所成的角为. 求:

(1)三棱锥的体积;

(2)异面直线PMAC所成角的大小. (结果用反三角函数值表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在上的函数,如果满足:对任意,存在常数,都有成立,则称上的有界函数,其中称为函数的上界.

1)设,判断上是否为有界函数,若是,请说明理由,并写出的所有上界的集合;若不是,也请说明理由;

2)若函数上是以为上界的有界函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,倾斜角为a的直线经过抛物线的焦点F,且与抛物线交于AB两点.

1)求抛物线的焦点F的坐标及准线的方程;

2)若a为锐角,作线段AB的垂直平分线mx轴于点P,证明|FP|-|FP|cos2a为定值,并求此定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数a为常数.

1)讨论函数的单调性:

2)若函数有两个极值点,求证:.

查看答案和解析>>

同步练习册答案