精英家教网 > 高中数学 > 题目详情
12.已知定义在R上的函数y=f(x)对任意的x都满足f(x+2)=f(x),当-1≤x<1时,f(x)=x3.若函数g(x)=f(x)-loga|x|恰有6个不同零点,则a的取值范围是(  )
A.($\frac{1}{7}$,$\frac{1}{5}$]∪(5,7]B.($\frac{1}{5}$,$\frac{1}{3}$]∪(5,7]C.($\frac{1}{5}$,$\frac{1}{3}$]∪(3,5]D.($\frac{1}{7}$,$\frac{1}{5}$]∪(3,5]

分析 本题通过典型的作图画出loga|x|以及f(x)的图象,从图象交点上交点的不同,来判断函数零点个数,从而确定底数a的大小范围.

解答 解:首先将函数g(x)=f(x)-loga|x|恰有6个零点,这个问题转化成f(x)=loga|x|的交点来解决.
数形结合:如图,f(x+2)=f(x),知道周期为2,当-1<x≤1时,f(x)=x3图象可以画出来,同理左右平移各2个单位,得到在(-7,7)上面的图象,
以下分两种情况:
(1)当a>1时,loga|x|如图所示,左侧有4个交点,右侧2个,
此时应满足loga5≤1<loga7,即loga5≤logaa<loga7,所以5≤a<7.
(2)当0<a<1时,loga|x|与f(x)交点,左侧有2个交点,右侧4个,
此时应满足loga5>-1,loga7≤-1,即loga5<-logaa≤loga7,所以5<a-1≤7.故$\frac{1}{7}$≤a<$\frac{1}{5}$综上所述,a的取值范围是:5≤a<7或$\frac{1}{7}$≤a<$\frac{1}{5}$,
故选:A.

点评 本题考查函数零点应用转化为两个函数交点来判断,又综合了奇函数对称性对数运算等知识,属于较难的一类题,端点也要认真考虑,极容易漏掉端点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=$\frac{kx+1}{{x}^{2}+c}$(c>1,k∈R)恰有一个极大值点和一个极小值点,其中的一个极值点是x=-c.
(Ⅰ)求函数f(x)的另一个极值点;
(Ⅱ)记函数f(x)的极大值为M、极小值为m,若M-m≥1,求实数c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,在三棱柱ABC-A1B1C1中,D,E分别为A1C1,BB1的中点,B1C⊥AB,侧面BCC1B1为菱形.求证:
(Ⅰ)DE∥平面ABC1
(Ⅱ)B1C⊥DE.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知圆C:x2+y2+4x+6y+12=0,过点P(1,1)做圆C的两条切线,切点分别为A、B.
(1)求切线长;
(2)求AB直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=x2+(sinα-2cosα)x+1是偶函数,则sinαcosα的值为(  )
A.$\frac{2}{5}$B.$-\frac{2}{5}$C.$±\frac{2}{5}$D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设F1,F2分别为双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的左、右焦点,A为双曲线的一个顶点,以F1F2为直径的圆交双曲线的一条渐近线于B,C两点,若△ABC的面积为$\frac{1}{2}{c^2}$,则该双曲线的离心率为(  )
A.3B.2C.$\sqrt{3}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知双曲线的一个焦点与抛物线x2=24y的焦点重合,其一条渐近线的倾斜角为60°,则该双曲线的标准方程为(  )
A.$\frac{x^2}{9}-\frac{y^2}{27}=1$B.$\frac{y^2}{9}-\frac{x^2}{27}=1$C.$\frac{y^2}{27}-\frac{x^2}{9}=1$D.$\frac{x^2}{27}-\frac{y^2}{9}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.等腰直角三角形ABC中,AB=BC=2,将斜边AC绕直角边AB旋转90°后得到旋转体A-BCD,如图所示,求:
(1)若E是CD的中点,求直线AE与面BCD所成的角;
(2)求异面直线AC和BD所成的角;(3)求旋转体A-BCD的体积V1和三棱锥A-BCD的体积V2之比.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.下列有关命题的说法正确的有①②④⑥⑦⑧
①已知命题p:-4<x-a<4,命题q:(x-1)(x-3)<0,且q是p的充分而不必要条件,则a的取值范围是[-1,5];
②已知命题p:若$\overrightarrow{a}$=(1,2)与$\overrightarrow{b}$=(-2,λ)共线,则λ=-4,命题q:?k∈R,直线y=kx与圆x2+y2-2y=0相交,则¬p∨q是真命题;
③命题“?x∈R,使得x2+x+1<0”的否定是“?x∈R,均有x2+x+1<0”;
④命题“若x=v,则cosx=cosv”的逆否命题为真命题;
⑤命题“若am2<bm2,则a<b”的逆命题是真命题;
⑥若x,y∈R,则“x=y“是xy≥($\frac{x+y}{2}$)2成立的充要条件;
⑦对命题p:?x∈R,使得x2+x+1<0,则¬p:?x∈R,则x2+x+1≥0;
⑧命题“若a>b,则2a>2b-1”的否命题为“若a≤b,则2a≤2b-1”.

查看答案和解析>>

同步练习册答案