精英家教网 > 高中数学 > 题目详情

(本小题满分12分)
已知函数,曲线在点处的切线方程为.
(1)求函数的解析式;
(2)过点能作几条直线与曲线相切?说明理由.

(1)(2)三条切线

解析试题分析:(1),由题知…………………………………………………(1分)

…………………………………………………………………………(5分)
(2)设过点(2,2)的直线与曲线相切于点,则切线方程为:

……………………………………………………………………(7分)
由切线过点(2,2)得:
过点(2,2)可作曲线的切线条数就是方程的实根个数……(9分)
,则

当t变化时,的变化如下表

t

0
(0,2)
2


+
0
-
0
+


极大值2

极小值-2

知,故有三个不同实根可作三条切线………………(12分)
考点:函数导数的几何意义及导数求最值
点评:导数的几何意义:函数在某一点处的导数值等于该点处的切线斜率,第二问求切线条数准化为求切点个数,进而化为求方程的根,此时可与函数最值结合,此题出的比较巧妙

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
设函数
(1)当a=1时,求的单调区间。
(2)若上的最大值为,求a的值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题共12分)
已知函数
(1)若对于定义域内的恒成立,求实数的取值范围;
(2)设有两个极值点,求证:
(3)设若对任意的,总存在,使不等式成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
已知函数.
(Ⅰ)函数在区间上是增函数还是减函数?证明你的结论;
(Ⅱ)当时,恒成立,求整数的最大值;
(Ⅲ)试证明:)。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题12分)
已知奇函数对任意,总有,且当时,.
(1)求证:上的减函数.
(2)求上的最大值和最小值.
(3)若,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知函数:.
(1) 当时①求的单调区间;
②设,若对任意,存在,使,求实数取值范围.
(2) 当时,恒有成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,.
(Ⅰ)若上为单调函数,求m的取值范围;
(Ⅱ)设,若在上至少存在一个,使得成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数时都取得极值
(1)求的值与函数的单调区间
(2)若对,不等式恒成立,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题14分)已知函数,设
(Ⅰ)求F(x)的单调区间;
(Ⅱ)若以图象上任意一点为切点的切线的斜率 恒成立,求实数的最小值。
(Ⅲ)是否存在实数,使得函数的图象与的图象恰好有四个不同的交点?若存在,求出的取值范围,若不存在,说名理由。

查看答案和解析>>

同步练习册答案