精英家教网 > 高中数学 > 题目详情

公差不为0的等差数列{an}中,数学公式,数列{bn}是等比数列,且b2012=a2012,则b2010•b2014=


  1. A.
    8
  2. B.
    32
  3. C.
    64
  4. D.
    128
C
分析:先利用等差数列的性质化简等式,再利用等比数列的性质,即可求得b2010•b2014的值.
解答:∵等差数列{an}中,

∵数列{bn}是等比数列,且b2012=a2012
∴b2012=a2012=8
∴b2010•b2014=b20122=64
故选C.
点评:本题考查等差数列与等比数列的性质,考查学生的计算能力,解题的关键是掌握等差数列与等比数列的性质.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知公差不为0的等差数列{an}满足a1,a3,a4成等比关系,Sn为{an}的前n项和,则
S3-S2
S5-S3
的值为(  )
A、2
B、3
C、
1
5
D、不存在

查看答案和解析>>

科目:高中数学 来源: 题型:

已知公差不为0的等差数列{an}的首项a1=2,且a1,a2,a4成等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设数列{an}的前n项和为Sn,求数列{
1Sn
}
的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

若Sn是公差不为0的等差数列{an}的前n项和,则S1,S2,S4成等比数列.
(1)求数列S1,S2,S4的公比;
(2)若S2=4,求{an}的通项公式;
(3)在(2)条件下,若bn=an-14,求{|bn|}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知公差不为0的等差数列{an}满足a2=3,a1,a3,a7成等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)数列{bn}满足bn=
an
an+1
+
an+1
an
,求数列{bn}的前n项和Sn
(Ⅲ)设cn=2n(
an+1
n
-λ)
,若数列{cn}是单调递减数列,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设{an}是公差不为0的等差数列,a1=2,且a1,a3,a6成等比数列,则a5的值为
4
4

查看答案和解析>>

同步练习册答案