【题目】已经集合A={x|(8x﹣1)(x﹣1)≤0};集合C={x|a<x<2a+5}
(1)若 ,求实数t的取值集合B;
(2)在(1)的条件下,若(A∪B)C,求实数a的取值范围.
【答案】
(1)解:由已知集合A={x|(8x﹣1)(x﹣1)≤0}={x| ≤x≤1}
若 ,即| ≤( )t≤1,即2﹣3≤2﹣2t≤20
则﹣3≤﹣2t≤0,
即0≤t≤ ,故集合B=[0, ]
(2)解:在(1)的条件下,A∪B=[0, ]
由(A∪B)C,即[0, ](a,2a+5),
∴ ,
解得:﹣ ≤a≤0
【解析】(1)求出集合A的等价条件,结合指数不等式的性质进行求解即可.(2)根据集合的基本运算以及集合关系建立不等式关系进行求解即可.
【考点精析】解答此题的关键在于理解交、并、补集的混合运算的相关知识,掌握求集合的并、交、补是集合间的基本运算,运算结果仍然还是集合,区分交集与并集的关键是“且”与“或”,在处理有关交集与并集的问题时,常常从这两个字眼出发去揭示、挖掘题设条件,结合Venn图或数轴进而用集合语言表达,增强数形结合的思想方法.
科目:高中数学 来源: 题型:
【题目】已知向量 =(sinx,2cosx), =(5 cosx,cosx),函数f(x)= +| |2﹣ .
(1)求函数f(x)的最小正周期;
(2)若x∈( , )时,f(x)=﹣3,求cos2x的值;
(3)若cosx≥ ,x∈(﹣ , ),且f(x)=m有且仅有一个实根,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)是定义在(﹣∞,0)∪(0,+∞)上的奇函数,在区间(﹣∞,0)单调递增且f(﹣1)=0.若实数a满足 ,则实数a的取值范围是( )
A.[1,2]
B.
C.(0,2]
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】要得到函数 的图象,只需要将函数y=sin3x的图象( )m.
A.向右平移 个单位
B.向左平移 个单位
C.向右平移 个单位
D.向左平移 个单位
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义在R上的偶函数f(x)满足:对任意的x1 , x2∈(﹣∞,0)(x1≠x2),都有 <0.则下列结论正确的是( )
A.f(0.32)<f(20.3)<f(log25)
B.f(log25)<f(20.3)<f(0.32)
C.f(log25)<f(0.32)<f(20.3)
D.f(0.32)<f(log25)<f(20.3)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com