精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系xOy中,直线与抛物线y24x相交于不同的AB两点,O为坐标原点

(1) 如果直线过抛物线的焦点且斜率为1,求的值;

2)如果,证明:直线必过一定点,并求出该定点.

【答案】18;(2)证明见解析

【解析】试题分析:(Ⅰ)根据抛物线的方程得到焦点的坐标,设出直线与抛物线的两个交点和直线方程,是直线的方程与抛物线方程联立,得到关于y的一元二次方程,根据根与系数的关系,求出弦长;

(Ⅱ)设出直线的方程,同抛物线方程联立,得到关于y的一元二次方程,根据根与系数的关系表示出数量积,根据数量积等于﹣4,做出数量积表示式中的b的值,即得到定点的坐标.

试题解析:

(1),  ,

(2)证明 由题意:抛物线焦点为(1,0),设l:x=ty+b,代入抛物线y2=4x,

消去xy2-4ty-4b=0,设A(x1,y1),B(x2,y2),则y1+y2=4t,y1y2=-4b,

·=x1x2+y1y2=(ty1+b)(ty2+b)+y1y2 =t2y1y2+bt(y1+y2)+b2+y1y2

=-4bt2+4bt2+b2-4b=b2-4b.

b2-4b=-4,∴b2-4b+4=0,∴b=2,

∴直线l过定点(2,0).∴若·=-4,则直线l必过一定点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数f(x)=lnx﹣ax+ ﹣1. (Ⅰ)当a=1时,求曲线f(x)在x=1处的切线方程;
(Ⅱ)当a= 时,求函数f(x)的单调区间;
(Ⅲ)在(Ⅱ)的条件下,设函数g(x)=x2﹣2bx﹣ ,若对于x1∈[1,2],x2∈[0,1],使f(x1)≥g(x2)成立,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数y=2x3﹣3x2﹣12x+5在区间[0,3]上最大值与最小值分别是(
A.5,﹣15
B.5,﹣4
C.﹣4,﹣15
D.5,﹣16

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)的导函数为f′(x),满足xf′(x)+2f(x)= ,且f(e)=
(Ⅰ)求f(x)的表达式
(Ⅱ)求函数f(x)在[1,e2]上的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过点(1,1)且与曲线y=x3相切的切线方程为(
A.y=3x﹣2
B.y= x+
C.y=3x﹣2或y= x+
D.y=3x﹣2或y= x﹣

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】用系统抽样方法从960人中抽取32人做问卷调查为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9,若抽到的32人中,编号落入区间[1,450]的人做问卷A,编号落人区间[451,750]的人做问卷B,其余的人做问卷C,则抽到的人中,做问卷C的人数为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校有一块圆心,半径为200米,圆心角为的扇形绿地,半径的中点分别为为弧上的一点,设,如图所示,拟准备两套方案对该绿地再利用.

(1)方案一:将四边形绿地建成观赏鱼池,其面积记为,试将表示为关于的函数关系式,并求为何值时,取得最大?

(2)方案二:将弧和线段围成区域建成活动场地,其面积记为,试将表示为关于的函数关系式;并求为何值时,取得最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x3﹣3x; (Ⅰ)求f(x)的单调区间;
(Ⅱ)求f(x)在区间[﹣3,2]上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将一枚骰子投掷两次,所得向上点数分别为m和n,则函数y=mx2﹣nx+1在[1,+∞)上为增函数的概率是(
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案