精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的离心率为,且经过点,两个焦点分别为.

1)求椭圆的方程;

2)过的直线与椭圆相交于两点,若的内切圆半径为,求以为圆心且与直线相切的圆的方程.

【答案】1;(2.

【解析】

试题解决直线与椭圆的位置关系的相关问题,其常规思路是先把直线方程与椭圆方程联立,消元、化简,然后应用根与系数的关系建立方程,反映在代数上,就是直线与椭圆方程联立的方程组有无实数解及实数解的个数的问题,它体现了方程思想的应用,当直线与椭圆相交时,要注意判别式大于零这一隐含条件,它可以用来检验所求参数的值是否有意义,也可通过该不等式来求参数的范围.对直线与椭圆的位置关系的考查往往结合平面向量进行求解,与向量相结合的题目,大都与共线、垂直和夹角有关,若能转化为向量的坐标运算往往更容易实现解题功能,所以在复习过程中要格外重视.

试题解析:()由,所以

将点的坐标代入椭圆方程得

故所求椭圆方程为

)设直线的方程为,代入椭圆方程得,显然判别式大于0恒成立,设的内切圆半径为,则有

所以

所以解得,

因为所求圆与直线相切,所以半径=

所以所求圆的方程为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四边形是矩形,沿对角线折起,使得点在平面上的射影恰好落在边上.

(1)求证:平面平面

(2)当时,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线 的焦点为,过的直线交抛物线于点,当直线的倾斜角是时, 的中垂线交轴于点.

(1)求的值;

(2)以为直径的圆交轴于点,记劣弧的长度为,当直线点旋转时,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量表得如下频数分布表:

质量指标值分组

[75,85)

[85,95)

[95,105)

[105,115)

[115,125)

频数

6

26

38

22

8

I)在答题卡上作出这些数据的频率分布直方图:

II)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表);

III)根据以上抽样调查数据,能否认为该企业生产的这种产品符合质量指标值不低于95的产品至少要占全部产品的80%的规定?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019年的流感来得要比往年更猛烈一些据四川电视台“新闻现场”播报,近日四川省人民医院一天的最高接诊量超过了一万四千人,成都市妇女儿童中心医院接诊量每天都在九千人次以上这些浩浩荡荡的看病大军中,有不少人都是因为感冒来的医院某课外兴趣小组趁着寒假假期空闲,欲研究昼夜温差大小与患感冒人数之间的关系,他们分别到成都市气象局与跳伞塔社区医院抄录了去年16月每月20日的昼夜温差情况与患感冒就诊的人数,得到如下资料:

日期

120

220

320

420

520

620

昼夜温差

10

11

13

12

8

6

就诊人数

22

25

29

26

16

12

该兴趣小组确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验.

若选取的是1月与6月的两组数据,请根据2月至5月份的数据,求出y关于x的线性回归方程

若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想?

参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆的右焦点为,右顶点为.已知,其中为原点, 为椭圆的离心率.

1)求椭圆的方程及离心率的值;

2)设过点的直线与椭圆交于点不在轴上),垂直于的直线与交于点,与轴交于点.,且,求直线的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知关于的不等式.

(1)当时,解不等式;

(2)如果不等式的解集为空集,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某大型超市在2018年元旦举办了一次抽奖活动,抽奖箱里放有2个红球,1个黄球和1个蓝球(这些小球除颜色外大小形状完全相同),从中随机一次性取2个小球,每位顾客每次抽完奖后将球放回抽奖箱.活动另附说明如下:

①凡购物满100(含100)元者,凭购物打印凭条可获得一次抽奖机会;

②凡购物满188(含188)元者,凭购物打印凭条可获得两次抽奖机会;

③若取得的2个小球都是红球,则该顾客中得一等奖,奖金是一个10元的红包;

④若取得的2个小球都不是红球,则该顾客中得二等奖,奖金是一个5元的红包;

⑤若取得的2个小球只有1个红球,则该顾客中得三等奖,奖金是一个2元的红包.

抽奖活动的组织者记录了该超市前20位顾客的购物消费数据(单位:元),绘制得到如图所示的茎叶图.

(1)求这20位顾客中获得抽奖机会的人数与抽奖总次数(假定每位获得抽奖机会的顾客都会去抽奖);

(2)求这20位顾客中奖得抽奖机会的顾客的购物消费数据的中位数与平均数(结果精确到整数部分);

(3)分别求在一次抽奖中获得红包奖金10元,5元,2元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,AC=3,BC=4,AB=5,以AB所在直线为轴,三角形面旋转一周形成一旋转体,求此旋转体的表面积和体积.

查看答案和解析>>

同步练习册答案